EI、Scopus 收录
中文核心期刊
Volume 54 Issue 5
May  2022
Turn off MathJax
Article Contents
Chen Shan, Peng Jinfeng, Huang Le, Zeng Xin, Li Lihao, He Wenyuan, Zheng Xuejun. The finite thickness model calibrates the Bimodal-AFM Young's modulus measurements of the two-dimensional MoS2. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1264-1273 doi: 10.6052/0459-1879-22-034
Citation: Chen Shan, Peng Jinfeng, Huang Le, Zeng Xin, Li Lihao, He Wenyuan, Zheng Xuejun. The finite thickness model calibrates the Bimodal-AFM Young's modulus measurements of the two-dimensional MoS2. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1264-1273 doi: 10.6052/0459-1879-22-034

THE FINITE THICKNESS MODEL CALIBRATES THE BIMODAL-AFM YOUNG'S MODULUS MEASUREMENTS OF THE TWO-DIMENSIONAL MoS2

doi: 10.6052/0459-1879-22-034
  • Received Date: 2022-01-20
  • Accepted Date: 2022-04-03
  • Available Online: 2022-04-04
  • Publish Date: 2022-05-01
  • Because the two-dimensional (2D) materials possesses unique crystal structures, novel physical properties and excellent mechanical properties, the 2D materials is of broad application prospects in many fields including micro- and nano-electromechanical systems and flexible electronic devices, etc. The elastic modulus is one of the basic mechanical parameters for 2D materials, which is of an important influence on its device application and strain regulation. However, restricted by the characteristics of two-dimensional structure and atomic thickness, it is difficult to measure the accurate elasticity modulus of 2D materials. Amplitude modulation and frequency modulation within the bimodal atomic force microscopy is an efficient method for measuring Young's modulus of 2D materials, but the influence of rigid substrates cannot be ignored for the measurement results. In this work, the Young's modulus distribution of the substrate and 2D molybdenum sulfide were directly measured by the bimodal atomic force microscopy. Based on the finite thickness model, the intrinsic Young's modulus value of the sample was obtained after corrected the substrate effect. The elastic coefficient and Young's modulus of 2D molybdenum disulfide were calculated by the first principles calculation. The experimental results are consisted with the calculation results. That’s to say, the bimodal atomic force microscopy is a reliable direct characterization method for Young's modulus of 2D materials. This method does not require tedious steps like preparing suspended 2D materials, and can avoid shortcomings of conventional characterization methods. For thin films of large area two-dimensional materials, this work provides a reliable experimental basis for the programmed characterization analysis of their mechanical properties. Meanwhile, it provides firm experimental basis for future mechanistic statistical analysis of high throughput experimental data.

     

  • loading
  • [1]
    Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669 doi: 10.1126/science.1102896
    [2]
    Xie ZJ, Zhang B, Ge YQ, et al. Chemistry, functionalization, and applications of recent monoelemental two-dimensional materials and their heterostructures. Chemical Reviews, 2022, 122(1): 1127-1207
    [3]
    Yun QB, Li LX, Hu ZM, et al. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Advanced Materials, 2020, 32(1): 1903826 doi: 10.1002/adma.201903826
    [4]
    Wang X, Zhang YW, Si HN, et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. Journal of the American Chemical Society, 2020, 142(9): 4298-4308 doi: 10.1021/jacs.9b12113
    [5]
    Liu K, Wu JQ. Mechanical properties of two-dimensional materials and heterostructures. Journal of Materials Research, 2016, 31(7): 832-844 doi: 10.1557/jmr.2015.324
    [6]
    Reserbat-Plantey A, Schädler KG, Gaudreau L, et al. Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS. Nature Communications, 2016, 7(1): 1-6
    [7]
    高扬. 原子力显微镜在二维材料力学性能测试中的应用综述. 力学学报, 2021, 53(4): 929-943 (Gao Yang. Review of the application of atomic force microscopy in testing the mechanical properties of two-dimensional materials. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 929-943 (in Chinese)
    [8]
    李远瞳, 汪国睿, 戴兆贺等. 原位通孔鼓泡法测试二维材料杨氏模量. 实验力学, 2019, 34(5): 739-747 (Li Yuantong,Wang Guorui, Dai Zhaohe, et al. Measurement of Young's modulus for 2D materials by in situ through-hole bubble method. Journal of Experimental Mechanics, 2019, 34(5): 739-747 (in Chinese)
    [9]
    Li PF, Jiang CC, Xu S, et al. In situ nanomechanical characterization of multi-layer MoS2 membranes: from intraplanar to interplanar fracture. Nanoscale, 2017, 9(26): 9119-9128 doi: 10.1039/C7NR02171B
    [10]
    毕篆芳, 商广义. 双模原子力显微术的纳米力学测量原理及其应用. 电子显微学报, 2019, 38(6): 689-696 (Bi Zhuanfang, Shang Guangyi. The principle and applications of nanomechanical measurement of bimodal AFM. Journal of Chinese Electron Microscopy Society, 2019, 38(6): 689-696 (in Chinese)
    [11]
    Li YH, Yu CB, Gan YY, et al. Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation. NPJ Computational Materials, 2018, 4(1): 1-8 doi: 10.1038/s41524-017-0060-9
    [12]
    Gisbert VG, Garcia R. Accurate wide-modulus-range nanomechanical mapping of ultrathin interfaces with bimodal atomic force microscopy. ACS Nano, 2021, 15(12): 20574-20581
    [13]
    Chiodini S, Ruiz-Rincón S, Garcia PD, et al. Bottom effect in atomic force microscopy nanomechanics. Small, 2020, 16(35): 2000269 doi: 10.1002/smll.202000269
    [14]
    Dimitriadis EK, Horkay F, Maresca J, et al. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophysical Journal, 2002, 82(5): 2798-2810 doi: 10.1016/S0006-3495(02)75620-8
    [15]
    Zheng ZY, Xu R, Cheng ZH. Multi-frequency atomic force microscopy. Scientia Sinica Technologica, 2016, 46(5): 437-450 doi: 10.1360/N092015-00246
    [16]
    Li XL, Li YD. Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chemistry-A European Journal, 2003, 9(12): 2726-2731 doi: 10.1002/chem.200204635
    [17]
    Rajabifar BB, Bajaj A, Reifenberger R, et al. Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy. Nanoscale, 2021, 13(41): 17428-17441 doi: 10.1039/D1NR03437E
    [18]
    Garcia R, Proksch R. Nanomechanical mapping of soft matter by bimodal force microscopy. European Polymer Journal, 2013, 49(8): 1897-1906 doi: 10.1016/j.eurpolymj.2013.03.037
    [19]
    Mahani Z, Tajvidi M. Viscoelastic mapping of spruce-polyurethane bond line area using AM-FM atomic force microscopy. International Journal of Adhesion and Adhesives, 2017, 79: 59-66 doi: 10.1016/j.ijadhadh.2017.09.005
    [20]
    Hutter JL, Bechhoefer J. Calibration of atomic-force microscope tips. Review of Scientific Instruments, 1993, 64(7): 1868-1873 doi: 10.1063/1.1143970
    [21]
    Lozano JR, Garcia R. Theory of multifrequency atomic force microscopy. Physical Review Letters, 2008, 100(7): 076102 doi: 10.1103/PhysRevLett.100.076102
    [22]
    Sneddon IN. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 1965, 3(1): 47-57 doi: 10.1016/0020-7225(65)90019-4
    [23]
    Jiang T, Huang R, Zhu Y. Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Advanced Functional Materials, 2014, 24(3): 396-402 doi: 10.1002/adfm.201301999
    [24]
    Tripathi M, Lee F, Michail A, et al. Structural defects modulate electronic and nanomechanical properties of 2D materials. ACS Nano, 2021, 15(2): 2520-2531 doi: 10.1021/acsnano.0c06701
    [25]
    Sohn A, Kim C, Jung J, et al. Precise layer control and electronic state modulation of a transition metal dichalcogenide via phase-transition-induced growth. Advanced Materials, 2021: 2103286 doi: 10.1002/adma.202103286
    [26]
    Ning MQ, Jiang PH, Ding W, et al. Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Advanced Functional Materials, 2021, 31(19): 2011229 doi: 10.1002/adfm.202011229
    [27]
    Choudhary N, Park J, Hwang J, et al. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Applied Materials & Interfaces, 2014, 6(23): 21215-21222
    [28]
    Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano, 2011, 5(12): 9703-9709 doi: 10.1021/nn203879f
    [29]
    Xue FM, Lu HJ, Shen YJ. Scale effect investigation of copper microwire's mechanical properties after in situ scanning electron microscope twisting. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(10): 3670-3677 doi: 10.1177/0954406218818595
    [30]
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865 doi: 10.1103/PhysRevLett.77.3865
    [31]
    Wang V, Xu N, Liu JC, et al. Vaspkit: A user-friendly interface facilitating high-throughput computing and analysis using vasp code. Computer Physics Communications, 2021, 267: 108033
    [32]
    Haastrup S, Strange M, Pandey M, et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Materials, 2018, 5(4): 042002
    [33]
    Page YL, Saxe P. Symmetry-general least-squares extraction of elastic coefficients from AB initio total energy calculations. Physical Review B, 2001, 63(17): 174103 doi: 10.1103/PhysRevB.63.174103
    [34]
    Musari AA, Joubert DP, Adebayo GA. DFT investigation of elastic, mechanical, vibrational and thermodynamic properties of cadmium dichalcogenides. Physica B: Condensed Matter, 2019, 552: 159-164 doi: 10.1016/j.physb.2018.10.011
    [35]
    Wei Q, Peng XH. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 2014, 104(25): 251915 doi: 10.1063/1.4885215
    [36]
    Chen YC, Sun MT. Two-dimensional WS2/MoS2 heterostructures: Properties and applications. Nanoscale, 2021, 13(11): 5594-5619 doi: 10.1039/D1NR00455G
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (485) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return