Citation: | Chen Shan, Peng Jinfeng, Huang Le, Zeng Xin, Li Lihao, He Wenyuan, Zheng Xuejun. The finite thickness model calibrates the Bimodal-AFM Young's modulus measurements of the two-dimensional MoS2. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1264-1273 doi: 10.6052/0459-1879-22-034 |
[1] |
Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669 doi: 10.1126/science.1102896
|
[2] |
Xie ZJ, Zhang B, Ge YQ, et al. Chemistry, functionalization, and applications of recent monoelemental two-dimensional materials and their heterostructures. Chemical Reviews, 2022, 122(1): 1127-1207
|
[3] |
Yun QB, Li LX, Hu ZM, et al. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Advanced Materials, 2020, 32(1): 1903826 doi: 10.1002/adma.201903826
|
[4] |
Wang X, Zhang YW, Si HN, et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. Journal of the American Chemical Society, 2020, 142(9): 4298-4308 doi: 10.1021/jacs.9b12113
|
[5] |
Liu K, Wu JQ. Mechanical properties of two-dimensional materials and heterostructures. Journal of Materials Research, 2016, 31(7): 832-844 doi: 10.1557/jmr.2015.324
|
[6] |
Reserbat-Plantey A, Schädler KG, Gaudreau L, et al. Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS. Nature Communications, 2016, 7(1): 1-6
|
[7] |
高扬. 原子力显微镜在二维材料力学性能测试中的应用综述. 力学学报, 2021, 53(4): 929-943 (Gao Yang. Review of the application of atomic force microscopy in testing the mechanical properties of two-dimensional materials. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 929-943 (in Chinese)
|
[8] |
李远瞳, 汪国睿, 戴兆贺等. 原位通孔鼓泡法测试二维材料杨氏模量. 实验力学, 2019, 34(5): 739-747 (Li Yuantong,Wang Guorui, Dai Zhaohe, et al. Measurement of Young's modulus for 2D materials by in situ through-hole bubble method. Journal of Experimental Mechanics, 2019, 34(5): 739-747 (in Chinese)
|
[9] |
Li PF, Jiang CC, Xu S, et al. In situ nanomechanical characterization of multi-layer MoS2 membranes: from intraplanar to interplanar fracture. Nanoscale, 2017, 9(26): 9119-9128 doi: 10.1039/C7NR02171B
|
[10] |
毕篆芳, 商广义. 双模原子力显微术的纳米力学测量原理及其应用. 电子显微学报, 2019, 38(6): 689-696 (Bi Zhuanfang, Shang Guangyi. The principle and applications of nanomechanical measurement of bimodal AFM. Journal of Chinese Electron Microscopy Society, 2019, 38(6): 689-696 (in Chinese)
|
[11] |
Li YH, Yu CB, Gan YY, et al. Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation. NPJ Computational Materials, 2018, 4(1): 1-8 doi: 10.1038/s41524-017-0060-9
|
[12] |
Gisbert VG, Garcia R. Accurate wide-modulus-range nanomechanical mapping of ultrathin interfaces with bimodal atomic force microscopy. ACS Nano, 2021, 15(12): 20574-20581
|
[13] |
Chiodini S, Ruiz-Rincón S, Garcia PD, et al. Bottom effect in atomic force microscopy nanomechanics. Small, 2020, 16(35): 2000269 doi: 10.1002/smll.202000269
|
[14] |
Dimitriadis EK, Horkay F, Maresca J, et al. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophysical Journal, 2002, 82(5): 2798-2810 doi: 10.1016/S0006-3495(02)75620-8
|
[15] |
Zheng ZY, Xu R, Cheng ZH. Multi-frequency atomic force microscopy. Scientia Sinica Technologica, 2016, 46(5): 437-450 doi: 10.1360/N092015-00246
|
[16] |
Li XL, Li YD. Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chemistry-A European Journal, 2003, 9(12): 2726-2731 doi: 10.1002/chem.200204635
|
[17] |
Rajabifar BB, Bajaj A, Reifenberger R, et al. Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy. Nanoscale, 2021, 13(41): 17428-17441 doi: 10.1039/D1NR03437E
|
[18] |
Garcia R, Proksch R. Nanomechanical mapping of soft matter by bimodal force microscopy. European Polymer Journal, 2013, 49(8): 1897-1906 doi: 10.1016/j.eurpolymj.2013.03.037
|
[19] |
Mahani Z, Tajvidi M. Viscoelastic mapping of spruce-polyurethane bond line area using AM-FM atomic force microscopy. International Journal of Adhesion and Adhesives, 2017, 79: 59-66 doi: 10.1016/j.ijadhadh.2017.09.005
|
[20] |
Hutter JL, Bechhoefer J. Calibration of atomic-force microscope tips. Review of Scientific Instruments, 1993, 64(7): 1868-1873 doi: 10.1063/1.1143970
|
[21] |
Lozano JR, Garcia R. Theory of multifrequency atomic force microscopy. Physical Review Letters, 2008, 100(7): 076102 doi: 10.1103/PhysRevLett.100.076102
|
[22] |
Sneddon IN. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 1965, 3(1): 47-57 doi: 10.1016/0020-7225(65)90019-4
|
[23] |
Jiang T, Huang R, Zhu Y. Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Advanced Functional Materials, 2014, 24(3): 396-402 doi: 10.1002/adfm.201301999
|
[24] |
Tripathi M, Lee F, Michail A, et al. Structural defects modulate electronic and nanomechanical properties of 2D materials. ACS Nano, 2021, 15(2): 2520-2531 doi: 10.1021/acsnano.0c06701
|
[25] |
Sohn A, Kim C, Jung J, et al. Precise layer control and electronic state modulation of a transition metal dichalcogenide via phase-transition-induced growth. Advanced Materials, 2021: 2103286 doi: 10.1002/adma.202103286
|
[26] |
Ning MQ, Jiang PH, Ding W, et al. Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Advanced Functional Materials, 2021, 31(19): 2011229 doi: 10.1002/adfm.202011229
|
[27] |
Choudhary N, Park J, Hwang J, et al. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Applied Materials & Interfaces, 2014, 6(23): 21215-21222
|
[28] |
Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano, 2011, 5(12): 9703-9709 doi: 10.1021/nn203879f
|
[29] |
Xue FM, Lu HJ, Shen YJ. Scale effect investigation of copper microwire's mechanical properties after in situ scanning electron microscope twisting. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(10): 3670-3677 doi: 10.1177/0954406218818595
|
[30] |
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865 doi: 10.1103/PhysRevLett.77.3865
|
[31] |
Wang V, Xu N, Liu JC, et al. Vaspkit: A user-friendly interface facilitating high-throughput computing and analysis using vasp code. Computer Physics Communications, 2021, 267: 108033
|
[32] |
Haastrup S, Strange M, Pandey M, et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Materials, 2018, 5(4): 042002
|
[33] |
Page YL, Saxe P. Symmetry-general least-squares extraction of elastic coefficients from AB initio total energy calculations. Physical Review B, 2001, 63(17): 174103 doi: 10.1103/PhysRevB.63.174103
|
[34] |
Musari AA, Joubert DP, Adebayo GA. DFT investigation of elastic, mechanical, vibrational and thermodynamic properties of cadmium dichalcogenides. Physica B: Condensed Matter, 2019, 552: 159-164 doi: 10.1016/j.physb.2018.10.011
|
[35] |
Wei Q, Peng XH. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 2014, 104(25): 251915 doi: 10.1063/1.4885215
|
[36] |
Chen YC, Sun MT. Two-dimensional WS2/MoS2 heterostructures: Properties and applications. Nanoscale, 2021, 13(11): 5594-5619 doi: 10.1039/D1NR00455G
|