Citation: | Chen Fuzhen, Li Yaxiong, Shi Tengda, Yan Hong. Numerical simulation of full phases of collapse of three-dimensional cylindrical granular pile. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1572-1589 doi: 10.6052/0459-1879-22-001 |
[1] |
Kim S, Kamrin K. Power-law scaling in granular rheology across flow geometries. Physical Review Letters, 2020, 125: 088002
|
[2] |
孙其诚. 颗粒介质的结构及热力学. 物理学报, 2015, 64(7): 076101 (Sun Qicheng. Granular structure and the nonequilibrium thermodynamics. Acta Physica Sinica, 2015, 64(7): 076101 (in Chinese) doi: 10.7498/aps.64.076101
Sun Qicheng. Granular structure and the nonequilibrium thermodynamics. Acta Physica Sinica, 2015, 64(7): 076101 (in Chinese)) doi: 10.7498/aps.64.076101
|
[3] |
黄德财, 孙刚, 厚美瑛等. 颗粒速度在颗粒流稀疏流-密集流转变中的作用. 物理学报, 2006, 55(9): 4754-4759 (Huang Decai, Sun Gang, Hou Meiying, et al. The effect of the granule velocity on the dilute-dense flow transition in granular system. Acta Physica Sinica, 2006, 55(9): 4754-4759 (in Chinese) doi: 10.3321/j.issn:1000-3290.2006.09.062
Huang Decai, Sun Gang, Hou Meiying, Lu Kunquan, et al. The effect of the granule velocity on the dilute-dense flow transition in granular system. Acta Physica Sinica, 2006, 55(9): 4754-4759 (in Chinese)) doi: 10.3321/j.issn:1000-3290.2006.09.062
|
[4] |
Jaeger H, Nagel S, Behringer R. Granular solids, liquids, and gases. Reviews of Modern Physics, 1996, 68(4): 1259-1273 doi: 10.1103/RevModPhys.68.1259
|
[5] |
Chialvo S, Sun J, Sundaresan S. Bridging the rheology of granular flows in three regimes. Physical Review E, 2012, 85: 021305
|
[6] |
Lube G, Huppert HE, Sparks RSJ, et al. Axisymmetric collapses of granular columns. Journal of Fluid Mechanics, 2004, 508: 175-199 doi: 10.1017/S0022112004009036
|
[7] |
Lube G, Huppert HE, Sparks R, et al. Collapses of two-dimensional granular columns. Physical Review E, 2005, 72(4): 041301
|
[8] |
Lajeunesse E, Mangeney-Castelnau A, Vilotte JP. Spreading of a granular mass on a horizontal plane. Physics of Fluids, 2004, 16(7): 2371-2381 doi: 10.1063/1.1736611
|
[9] |
Lajeunesse E, Monnier JB, Homsy GM. Granular slumping on a horizontal surface. Physics of Fluids, 2005, 17(10): 177
|
[10] |
Roche O, Attali M, Mangeney A, et al. On the run-out distance of geophysical gravitational flows: Insight from fluidized granular collapse experiments. Earth and Planetary Science Letters, 2011, 311(3-4): 375-385 doi: 10.1016/j.jpgl.2011.09.023
|
[11] |
Artoni R, Santomaso AC, Gabrieli F, et al. Collapse of quasi-two-dimensional wet granular columns. Physical Review E, 2013, 87(3): 032205 doi: 10.1103/PhysRevE.87.032205
|
[12] |
Farin M, Mangeney A, Roche O. Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: Insights from laboratory experiments. Journal of Geophysical Research Earth Surface, 2014, 119(3): 504-532 doi: 10.1002/2013JF002750
|
[13] |
Hungr O. Simplified models of spreading flow of dry granular material. Canadian Geotechnical Journal, 2008, 45(8): 1156-1168
|
[14] |
Pouliquen, O. Scaling laws in granular flows down rough inclined planes. Physics of Fluids, 1999, 11(3): 542-548 doi: 10.1063/1.869928
|
[15] |
Mangeney A, Roche O, Hungr O, et al. Erosion and mobility in granular collapse over sloping beds. Journal of Geophysical Research:Earth Surface, 2010, 115: 03040 doi: 10.1029/2009JF001462
|
[16] |
张昱, 韦艳芳, 彭政等. 倾斜沙漏流与颗粒休止角研究. 物理学报, 2016, 65(8): 084502 (Zhang Yu, Wei Yanfang, Peng Zheng, et al. Inclined glass-sand flow and the angle of repose. Acta Physica Sinica, 2016, 65(8): 084502 (in Chinese) doi: 10.7498/aps.65.084502
Zhang Yu, Wei Yanfang, Peng Zheng, et al. Inclined glass-sand flow and the angle of repose. Acta Physica Sinica, 2016, 65(8): 084502 (in Chinese)) doi: 10.7498/aps.65.084502
|
[17] |
Staron L, Hinch EJ. Study of the collapse of granular columns using DEM numerical simulation. Journal of Fluid Mechanics, 2005, 545(1): 1-27
|
[18] |
Lacaze L, Phillips JC, Kerswell RR. Planar collapse of a granular column: experiments and discrete element simulations. Physics of Fluids, 2008, 20(6): 144302
|
[19] |
Utili S, Zhao T, Houlsby GT. 3D DEM investigation of granular column collapse: Evaluation of debris motion and its destructive power. Engineering Geology, 2015, 186: 3-16
|
[20] |
孙其诚, 王光谦. 静态堆积颗粒中的力链分布. 物理学报, 2008, 57(8): 4667-4674 (Sun Qicheng, Wang Guangqian. Force distribution in static granular matter in two dimensions. Acta Physica Sinica, 2008, 57(8): 4667-4674 (in Chinese) doi: 10.3321/j.issn:1000-3290.2008.08.007
Sun Qicheng, Wang Guangqian. Force distribution in static granular matter in two dimensions. Acta Physica Sinica, 2008, 57(8): 4667-4674 (in Chinese)) doi: 10.3321/j.issn:1000-3290.2008.08.007
|
[21] |
成浩, 韩培锋, 苏有文. 基于离散元方法的松散体滑动堆积特性及影响因素分析. 物理学报, 2020, 69(16): 164501 (Cheng Hao, Han Peifeng, Su Youwen. Sliding and accumulation characteristics of loose materials and its influencing factors based on discrete element method. Acta Physica Sinica, 2020, 69(16): 164501 (in Chinese) doi: 10.7498/aps.69.20200223
Cheng Hao, Han Peifeng, Su Youwen. Sliding and accumulation characteristics of loose materials and its influencing factors based on discrete element method. Acta Physica Sinica, 2020, 69(16): 164501 (in Chinese)) doi: 10.7498/aps.69.20200223
|
[22] |
Zhang R, Su D, Lei G, et al. Three-dimensional granular column collapse: Impact of column thickness. Powder Technology, 2021, 389: 328-338 doi: 10.1016/j.powtec.2021.05.043
|
[23] |
Klein ML, Shinoda W. Large-scale molecular dynamics simulations of self-assembling systems. Science, 2008, 321(5890): 798-800 doi: 10.1126/science.1157834
|
[24] |
Chu K, Chen J, Yu A. Applicability of a coarse-grained CFD–DEM model on dense medium cyclone. Minerals Engineering, 2016: 43-54
|
[25] |
Kamrin K. Nonlinear elasto-plastic model for dense granular flow. International Journal of Plasticity, 2010, 26(2): 167-188 doi: 10.1016/j.ijplas.2009.06.007
|
[26] |
杨肃, 张会琴, 余王昕等. 基于沿程坐标积分模式颗粒流与结构物阵列相互作用的数值模拟. 力学学报, 2021, 53(12): 3401-3414 (Yang Su, Zhang Huiqin, Yu Wangxin, et al. Numerical study of interaction between granular flow and an array of obstacles by a bed-fitted depth-averaged model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3401-3414 (in Chinese)
Yang Su, Zhang Huiqin, Yu Wangxin, et al. Numerical study of interaction between granular flow and an array of obstacles by a bed-fitted depth-averaged model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3401-3414 (in Chinese))
|
[27] |
Chauchat J, Medale M. A three-dimensional numerical model for dense granular flows based on the μ(I) rheology. Journal of Computational Physics, 2014, 256: 696-712
|
[28] |
Gesenhues L, José J, Camata Crtes AMA, et al. Finite element simulation of complex dense granular flows using a well-posed regularization of the μ(I)-rheology. Computers & Fluids, 2019, 188(30): 102-113
|
[29] |
Henann DL, Kamrin K. A finite element implementation of the nonlocal granular rheology. International Journal for Numerical Methods in Engineering, 2016, 108: 273-302
|
[30] |
Lagrée PY, Staron L, Popinet S. The granular column collapse as a continuum: Validity of a two-dimensional Navier-Stokes model with a μ (I)-rheology. Journal of Fluid Mechanics, 2011, 686: 378-408 doi: 10.1017/jfm.2011.335
|
[31] |
Staron L, Lagrée PY, Popinet S. Continuum simulation of the discharge of the granular silo. European Physical Journal E, 2014, 37(1): 1-12 doi: 10.1140/epje/i2014-14001-x
|
[32] |
Staron L, Lagrée PY, Popinet S. The granular silo as a continuum plastic flow: The hour-glass vs the clepsydra. Physics of Fluids, 2012, 24(10): 103301 doi: 10.1063/1.4757390
|
[33] |
Andersen S, Andersen L. Analysis of stress updates in the material-point method//Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics, 2009, 129-134.
|
[34] |
Wieckowski Z. The material point method in large strain engineering problems. Computer Methods in Applied Mechanics & Engineering, 2004, 193: 4417-4438
|
[35] |
Abe K, Soga K, Bandara S. Material point method for coupled hydromechanical problems. Journal of Geotechnical & Geoenvironmental Engineering, 2014, 140(3): 04013033
|
[36] |
Bandara S, Soga K. Coupling of soil deformation and pore fluid flow using material point method. Computers & Geotechnics, 2015, 63: 199-214
|
[37] |
Fern EJ, Soga K. The role of constitutive models in MPM simulations of granular column collapses. Acta Geotechnica, 2016, 11(3): 659-678 doi: 10.1007/s11440-016-0436-x
|
[38] |
Dunatunga S, Kamrin K. Continuum modelling and simulation of granular flows through their many phases. Journal of Fluid Mechanics, 2015, 779: 483-513 doi: 10.1017/jfm.2015.383
|
[39] |
Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389 doi: 10.1093/mnras/181.3.375
|
[40] |
Lucy LB. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 1977, 82: 1013-1024 doi: 10.1086/112164
|
[41] |
Bui HH, Fukagawa R, Sako K, et al. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. International Journal for Numerical & Analytical Methods in Geomechanics, 2010, 32(12): 1537-1570
|
[42] |
Nguyen CT, Chi TN, Bui HH, et al. A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation. Landslides, 2017, 14: 69-81 doi: 10.1007/s10346-016-0681-y
|
[43] |
Ikari H, Gotoh H. SPH-based simulation of granular collapse on an inclined bed. Mechanics Research Communications, 2016, 73: 12-18 doi: 10.1016/j.mechrescom.2016.01.014
|
[44] |
Minatti L, Paris E. A SPH model for the simulation of free surface granular flows in a dense regime. Applied Mathematical Modelling, 2015, 39(1): 363-382
|
[45] |
Liang DF, He XZ. A comparison of conventional and shear-rate dependent Mohr-Coulomb models for simulating landslides. Journal of Mountain Science, 2011, 11(6): 1478-1490
|
[46] |
Chambon G, Bouvarel R, Laigle D, et al. Numerical simulations of granular free-surface flows using smoothed particle hydrodynamics. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(12-13): 698-712 doi: 10.1016/j.jnnfm.2011.03.007
|
[47] |
Chen FZ, Qiang HF, Gao WR. A coupled SDPH-FVM method for gas-particle multiphase flows: Methodology. International Journal for Numerical Methods in Engineering, 2016, 109(1): 73-101
|
[48] |
Chen FZ, Qiang HF, Gao WR. Coupling of smoothed particle hydrodynamics and finite volume method for two-dimensional spouted beds. Computer & Chemical Engineering, 2015, 77: 135-146
|
[49] |
陈福振, 强洪夫, 高巍然. 风沙运动问题的SPH-FVM耦合方法数值模拟研究. 物理学报, 2014, 63(13): 130202 (Chen Fuzhen, Qiang Hongfu, Gao Weiran. Simulation of aerolian sand transport with SPH-FVM coupled method. Acta Physica Sinica, 2014, 63(13): 130202 (in Chinese) doi: 10.7498/aps.63.130202
Chen Fuzhen, Qiang Hongfu, Gao Weiran. Simulation of aerolian sand transport with SPH-FVM coupled method. Acta Physica Sinica, 2014, 63(13): 130202 (in Chinese)) doi: 10.7498/aps.63.130202
|
[50] |
陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟. 物理学报, 2014, 63(23): 230206 (Chen Fuzhen, Qiang Hongfu, Gao Weiran. Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2014, 63(23): 230206 (in Chinese) doi: 10.7498/aps.63.230206
Chen Fuzhen, Qiang Hongfu, Gao Weiran. Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2014, 63(23): 230206 (in Chinese)) doi: 10.7498/aps.63.230206
|
[51] |
陈福振, 强洪夫, 苗刚等. 燃料抛撒成雾及其燃烧爆炸的光滑离散颗粒流体动力学方法数值模拟研究. 物理学报, 2015, 64(11): 110202 (Chen Fuzhen, Qiang Hongfu, Miao Gang, et al. Numerical simulation of fuel dispersal into cloud and its combustion and explosion with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2015, 64(11): 110202 (in Chinese) doi: 10.7498/aps.64.110202
Chen Fuzhen, Qiang Hongfu, Miao Gang, et al. Numerical simulation of fuel dispersal into cloud and its combustion and explosion with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2015, 64(11), 110202 (in Chinese)) doi: 10.7498/aps.64.110202
|
[52] |
Chen FZ, Yan H. Elastic-viscoplastic constitutive theory of dense granular flow and its three-dimensional numerical realization. Physics of Fluids, 2021, 33(12): 123310 doi: 10.1063/5.0068458
|
[53] |
Chen FZ, Yan H. Constitutive model for solid-like, liquid-like, and gas-like phases of granular media and their numerical implementation. Powder Technology, 2021, 390: 369-386 doi: 10.1016/j.powtec.2021.05.023
|
[54] |
Lun CKK, Savage SB, Jeffrey DJ, et al. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics, 1984, 140: 223-256 doi: 10.1017/S0022112084000586
|
[55] |
Jenkins JT, Savage SB. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. Journal of Fluid Mechanics, 1983, 130: 187-202 doi: 10.1017/S0022112083001044
|
[56] |
Srivastava A, Sundaresan S. Analysis of a frictional-kinetic model for gas-particle flow. Powder Technology, 2003, 129(1-3): 72-85 doi: 10.1016/S0032-5910(02)00132-8
|
[57] |
Savage SB. Analyses of slow high-concentration flows of granular materials. Journal of Fluid Mechanics, 1998, 377: 1-26 doi: 10.1017/S0022112098002936
|
[58] |
Johnson PC, Nott P, Jackson R. Frictional-collisional equations of motion for participate flows and their application to chutes. Journal of Fluid Mechanics, 1990, 210: 501-535 doi: 10.1017/S0022112090001380
|
[59] |
Johnson PC, Jackson R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing. Journal of Fluid Mechanics, 1987, 176: 67-93 doi: 10.1017/S0022112087000570
|
[60] |
Schaeffer DG. Instability in the evolution equations describing incompressible granular flow. Journal of Differential Equations, 1987, 66(1): 19-50 doi: 10.1016/0022-0396(87)90038-6
|
[61] |
Forterre Y, Pouliquen O. Long-surface-wave instability in dense granular flows. Journal of Fluid Mechanics, 2003, 486: 21-50 doi: 10.1017/S0022112003004555
|
[62] |
MiDi GDR. On dense granular flows. European Physical Journal E, 2004, 14: 341-365
|
[63] |
Chen JK, Beraun JE, Carney TC. A corrective smoothed particle method for boundary value problems in heat conduction. International Journal for Numerical Methods in Engineering, 1999, 46(2): 231-252 doi: 10.1002/(SICI)1097-0207(19990920)46:2<231::AID-NME672>3.0.CO;2-K
|
[64] |
Bonet J, Lok T. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Computer Methods in Applied Mechanics & Engineering, 1999, 180(1-2): 97-115
|
[65] |
Hertz H. On the contact of elastic solids. Journal für die reine und angewandte Mathematik, 1882, 92: 156-171
|
[66] |
Coulomb CA. Sur une application des regles maximis et minimis a quelques problems de statique, relatives a l’architecture. Acad. Sci. Paris Mem. Math. Phys., 1776, 7: 343-382
|
[67] |
Li S, Liu WK. Meshfree and particle methods and their applications. Applied Mechanics Reviews, 2002, 55(1): 1-34 doi: 10.1115/1.1431547
|