Citation: | Zhang Lei, Ao Lei, Pei Zhiyong. Energy saving mechanism of hydrodynamic collective behavior of multiple flexible beams in V formation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1706-1719 doi: 10.6052/0459-1879-21-688 |
[1] |
Humston R, Ault JS, Lutcavage M, et al. Schooling and migration of large pelagic fishes relative to environmental cues. Fisheries Oceanography, 2010, 9(2): 136-146
|
[2] |
Olson RS, Hintze A, Dyer FC, et al. Predator confusion is sufficient to evolve swarming behavior. Journal of the Royal Society Interface, 2013, 10(85): 20130305 doi: 10.1098/rsif.2013.0305
|
[3] |
Peng H, Maldonado-Chaparro AA, Farine DR. The role of habitat configuration in shaping social structure: a gap in studies of animal social complexity. Behavioral Ecology and Sociobiology, 2019, 73(1): 1-14
|
[4] |
Shelton DS, Shelton SG, Daniel DK, et al. Collective behavior in wild zebrafish. Zebrafish, 2020, 17(4): 243-252 doi: 10.1089/zeb.2019.1851
|
[5] |
Lissaman PBS, Schollenberger CA. Formation flight of birds. Science, 1970, 168(3934): 1035
|
[6] |
Weihs D. Hydromechanics of fish schooling. Nature, 1973, 241: 290-291 doi: 10.1038/241290a0
|
[7] |
Weimerskirch H, Martin J, Clerquin Y, et al. Energy saving in flight formation. Nature, 2001, 413: 697-698 doi: 10.1038/35099670
|
[8] |
Portugal SJ, Hubel TY, Fritz J, et al. Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature, 2014, 505(7483): 399 doi: 10.1038/nature12939
|
[9] |
Liao JC, Beal DN, Lauder GV, et al. Fish exploiting vortices decrease muscle activity. Science, 2003, 302: 1566-1569 doi: 10.1126/science.1088295
|
[10] |
Gopalkrishnan R, Triantafyllou MS, Triantafyllou GS, et al. Active vorticity control in a shear flow using a flapping foil. Journal of Fluid Mechanics, 1994, 274: 1-21 doi: 10.1017/S0022112094002016
|
[11] |
Beal DN, Hover FS, Triantafyllou MS, et al. Passive propulsion in vortex wakes. Journal of Fluid Mechanics, 2006, 549: 385-402 doi: 10.1017/S0022112005007925
|
[12] |
Lauder GV, Anderson EJ, Tangorra J, et al. Fish biorobotics: kinematics and hydrodynamics of self-propulsion. Journal of Experimental Biology, 2007, 210: 2767-2780 doi: 10.1242/jeb.000265
|
[13] |
Ristroph L, Zhang J. Anomalous hydrodynamic drafting of interacting flapping flags. Physical Review Letters, 2008, 101(19): 194502 doi: 10.1103/PhysRevLett.101.194502
|
[14] |
王思滢. 柔性体与流体耦合运动的数值模拟和试验研究. [博士论文]. 合肥: 中国科学技术大学, 2010
Wang Siying. Numerical and experimental investigation on the interaction between moving fluid and flexible bodies. [PhD Thesis]. Hefei: University of Science and Technology of China, 2010 (in Chinese)
|
[15] |
Boschitshch BM, Dewey PA, Smith AJ. Propulsive performance of unsteady tandem hydrofoils in an in-line configuration. Physics of Fluids, 2014, 26: 051901 doi: 10.1063/1.4872308
|
[16] |
Becker AD, Masoud H, Newbolt JW, et al. Hydrodynamic schooling of flapping swimmers. Nature Communications, 2015, 6: 8514 doi: 10.1038/ncomms9514
|
[17] |
Ramananarivo S, Fang F, Oza A, et al. Flow interactions lead to orderly formations of flapping wings in forward flight. Physical Review Fluid, 2016, 1: 071201 doi: 10.1103/PhysRevFluids.1.071201
|
[18] |
Zhu LD, Peskin CS. Interaction of two flapping filaments in a flowing soap film. Physics of Fluids, 2003, 15(7): 1954-1960 doi: 10.1063/1.1582476
|
[19] |
Huang WX, Shin SJ, Sung HJ. Simulation of flexible filaments in a uniform flow by the immersed boundary method. Journal of Computational Physics, 2007, 226: 2206-2228 doi: 10.1016/j.jcp.2007.07.002
|
[20] |
Zhang L, Zou SY, Wang CZ, et al. A loosely-coupled scheme for the flow-induced flapping problem of two-dimensional flexible plate with strong added-mass effect. Ocean Engineering, 2020, 217: 107656 doi: 10.1016/j.oceaneng.2020.107656
|
[21] |
Zhu LD. Interaction of two tandem deformable bodies in a viscous incompressible flow. Journal of Fluid Mechanics, 2009, 635: 455-475 doi: 10.1017/S0022112009007903
|
[22] |
Uddin E, Huang WX, Sung HJ. Actively flapping tandem flexible flags in a viscous flow. Journal of Fluid Mechanics, 2015, 780: 120-142 doi: 10.1017/jfm.2015.460
|
[23] |
Zhu XJ, He GW, Zhang X. Flow-mediated interactions between two self-propelled flapping filaments in tandem configuration. Physical Review Letters, 2014, 113: 238105 doi: 10.1103/PhysRevLett.113.238105
|
[24] |
Peng ZR, Huang HB, Lu XY. Hydrodynamic schooling of multiple self-propelled flapping plates. Journal of Fluid Mechanics, 2018, 853: 587-600 doi: 10.1017/jfm.2018.634
|
[25] |
Peng ZR, Huang HB, Lu XY. Collective locomotion of two closely spaced self-propelled flapping plates. Journal of Fluid Mechanics, 2018, 849: 1068-1095 doi: 10.1017/jfm.2018.447
|
[26] |
彭泽瑞. 仿生自主推进柔性板集群运动的流固耦合数值研究. [博士论文]. 合肥: 中国科学技术大学, 2018
Peng Zerui. Numerical investigation of hydrodynamic schooling of bio-inspired self-propulsive flexible plates. [PhD Thesis]. Hefei: University of Science and Technology of China, 2018 (in Chinese)
|
[27] |
Zhang L, Wang CZ, Sun JL, et al. Study on the hydrodynamic aggregation of parallel self-propelled flexible plates based on a loosely coupled partitioned algorithm. Ocean Engineering, 2021, 223: 108703 doi: 10.1016/j.oceaneng.2021.108703
|
[28] |
克拉夫, 彭津. 结构动力学. 王光远译. 北京: 高等教育出版社, 2006
Clough R, Penzein J. Dynamics of Structures. Wang GY trans. Beijing: Higher Education Press, 2006 (in Chinese)
|
[29] |
Hua RN, Zhu L, Lu XY. Locomotion of a flapping flexible plate. Physics of Fluids, 2013, 25(12): 121901 doi: 10.1063/1.4832857
|
[30] |
Liu K, Huang H, Lu XY. Hydrodynamic benefits of intermittent locomotion of a self-propelled flapping plate. Physical Review E, 2020, 102: 053106
|
[31] |
Liu K, Huang H, Lu XY. Self-propelled plate in wakes behind tandem cylinders. Physical Review E, 2019, 100: 033114 doi: 10.1103/PhysRevE.100.033114
|