Citation: | Fu Junjian, Li Shuaihu, Li Hao, Gao Liang, Zhou Xiangman, Tian Qihua. Structural elastography method based on topology optimization. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1331-1340 doi: 10.6052/0459-1879-21-672 |
[1] |
Ophir J, Céspedes I, Ponnekanti H, et al. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging, 1991, 13(2): 111-134 doi: 10.1177/016173469101300201
|
[2] |
özyazici ÖE, Burak OM, Abdurrahman OO. Evaluation of the clinical role of strain elastography in patients diagnosed with congenital torticollis. Journal of Diagnostic Medical Sonography, 2021, 37(3): 242-246 doi: 10.1177/8756479320983242
|
[3] |
周正干, 孙广开. 先进超声检测技术的研究应用进展. 机械工程学报, 2017, 53(22): 1-10 (Zhou Zhenggan, Sun Guangkai. New progress of the study and application of advanced ultrasonic testing technology. Journal of Mechanical Engineering, 2017, 53(22): 1-10 (in Chinese) doi: 10.3901/JME.2017.22.001
|
[4] |
孙亮, 毛汉领, 黄振峰等. 基于电阻抗成像技术的金属疲劳损伤检测. 机械设计与制造, 2020, 350(4): 184-188 (Sun Liang, Mao Hanling, Huang Zhenfeng, et al. Fatigue damage detection technology of metal materials based on electrical impedance tomography. Machinery Design &Manufacture, 2020, 350(4): 184-188 (in Chinese)
|
[5] |
Liu D, Khambampati AK, Du J. A parametric level set method for electrical impedance tomography. IEEE Transactions on Medical Imaging, 2018, 37(2): 451-460 doi: 10.1109/TMI.2017.2756078
|
[6] |
何知义, 邵海东, 程军圣等. 基于弹性核凸包张量机的机械设备热成像故障诊断方法. 中国机械工程, 2021, 32(12): 1456-1461 (He Zhiyi, Shao Haidong, Cheng Junsheng, et al. A fault diagnosis method of mechanical equipment based on FKCH-TM and thermal images. China Mechanical Engineering, 2021, 32(12): 1456-1461 (in Chinese) doi: 10.3969/j.issn.1004-132X.2021.12.009
|
[7] |
戴景民, 汪子君. 红外热成像无损检测技术及其应用现状. 自动化技术与应用, 2007, 26(1): 1-7 (Dai Jingmin, Wang Zijun. Infrared thermography non-destructive testing technology and its applications. Techniques of Automation and Applications, 2007, 26(1): 1-7 (in Chinese) doi: 10.3969/j.issn.1003-7241.2007.01.001
|
[8] |
Costa FB, Machado MA, Bonfait GJ, et al. Continuous wave terahertz imaging for NDT: Fundamentals and experimental validation. Measurement, 2021, 172: 108904 doi: 10.1016/j.measurement.2020.108904
|
[9] |
Wan M, Healy JJ, Sheridan JT. Terahertz phase imaging and biomedical applications. Optics and Laser Technology. 2020, 122: 105859
|
[10] |
Zhang LX, Yang G, Hu D. Identification of voids in structures based on level set method and FEM. International Journal of Computational Methods, 2018, 15(1): 1850015
|
[11] |
Nishizu T, Takezawa A, Kitamura M. Eigenfrequecy-based damage identification method for non-destructive testing based on topology optimization. Engineering Optimization, 2016, 49(3): 417-433
|
[12] |
阎军, 许琦, 张起等. 人工智能在结构拓扑优化领域的现状与未来趋势. 计算力学学报, 2021, 38(4): 412-422 (Yan Jun, Xu Qi, Zhang Qi, et al. Current and future trends of artificial intelligence in the field of structural topology optimization. Chinese Journal of Computational Mechanics, 2021, 38(4): 412-422 (in Chinese)
|
[13] |
廉艳平, 王潘丁, 高杰等. 金属增材制造若干关键力学问题研究进展. 力学进展, 2021, 51(3): 648-701 (Lian Yanping, Wang Panding, Gao Jie, et al. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review. Advances in Mechanics, 2021, 51(3): 648-701 (in Chinese) doi: 10.6052/1000-0992-21-037
|
[14] |
朱继宏, 周涵, 王创等. 面向增材制造的拓扑优化技术发展现状与未来. 航空制造技术, 2020, 63(10): 24-38 (Zhu Jihong, Zhou Han, Wang Chuang, et al. Development status and future of topology optimization technology for additive manufacturing. Aviation Manufacturing Technology, 2020, 63(10): 24-38 (in Chinese)
|
[15] |
Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering. 2003, 192(1-2): 227-246
|
[16] |
Allaire G, Jouve F, Toader A. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2003, 194(1): 363-393
|
[17] |
Wang YG, Zhan K. Matlab implementations of velocity field level set method for topology optimization: An 80-line code for 2D and a 100-line code for 3D problems. Structural and Multidisciplinary Optimization, 2021, 64(6): 4325-4342 doi: 10.1007/s00158-021-02958-4
|
[18] |
Zhang WS, Yuan J, Zhang J, et al. A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Structural and Multidisciplinary Optimization, 2016, 53(6): 1243-1260 doi: 10.1007/s00158-015-1372-3
|
[19] |
Zhu J, Zhang W, Beckers P. Integrated layout design of multi-component system. International Journal for Numerical Methods in Engineering, 2010, 78(6): 631-651
|
[20] |
Zhang LX, Yang G, Hu D, et al. An approach based on level set method for void identification of continuum structure with time-domain dynamic response. Applied Mathematical Modelling, 2019, 75(3): 446-480
|
[21] |
Yue M, Du ZL, Zhao DM, et al. Moving morphable inclusion approach: An explicit framework to solve inverse problem in elasticity. Journal of Applied Mechanics, 2021, 88(4): 041001 doi: 10.1115/1.4049142
|
[22] |
Yue M, Sergey K, Sevan G. Reduced boundary sensitivity and improved contrast of the regularized inverse problem solution in elasticity. Journal of Applied Mechanics, 2016, 83(3): 031001 doi: 10.1115/1.4031937
|
[23] |
Zhang WS, Du ZL, Sun G, et al. A level set approach for damage identification of continuum structures based on dynamic responses. Journal of Sound and Vibration, 2017, 386: 100-115 doi: 10.1016/j.jsv.2016.06.014
|
[24] |
Bendsøe MP, Sigmund O. Topology Optimization: Theory, Method and Applications. Berlin: Springer, 2003
|
[25] |
Long K, Yang XY, Saeed N, et al. Topology optimization of transient problem with maximum dynamic response constraint using SOAR scheme. Frontiers of Mechanical Engineering, 2021, 16(3): 593-606 doi: 10.1007/s11465-021-0636-4
|
[26] |
付君健, 孙鹏飞, 杜义贤等. 基于子结构法的多层级结构拓扑优化. 中国机械工程, 2021, 32(16): 1937-1944 (Fu Junjian, Sun Pengfei, Du Yixian, et al. Hierarchical structure topology optimization based on substructure method. Journal of Mechanical Engineering, 2021, 32(16): 1937-1944 (in Chinese) doi: 10.3969/j.issn.1004-132X.2021.16.006
|
[27] |
Bendsøe MP, Sigmund O. Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 1999, 69(9): 635-654
|
[28] |
朱本亮, 张宪民, 李海等. 基于节点密度插值的多材料柔顺机构拓扑优化. 机械工程学报, 2021, 57(15): 53-61 (Zhu Benliang, Zhang Xianmin, Li Hai, et al. Topology optimization of multi-material compliant mechanisms using node-density interpolation scheme. Journal of Mechanical Engineering, 2021, 57(15): 53-61 (in Chinese) doi: 10.3901/JME.2021.15.053
|
[29] |
杜义贤, 尹鹏, 李荣等. 兼具吸能和承载特性的梯度结构宏细观跨尺度拓扑优化设计. 机械工程学报, 2020, 56(7): 171-180 (Du Yixian, Yin Peng, Li Rong, et al. Macro and micro trans-scale topological optimization design of gradient structure with both energy absorption and load-bearing characteristics. Journal of Mechanical Engineering, 2020, 56(7): 171-180 (in Chinese) doi: 10.3901/JME.2020.07.171
|
[30] |
胡骏, 亢战. 考虑可控性的压电作动器拓扑优化设计. 力学学报, 2019, 51(4): 1073-1081 (Hu Jun, Kang Zhan. Topology optimization of piezoelectric actuator considering controllability. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1073-1081 (in Chinese)
|
[31] |
陈文炯, 刘书田, 张永存. 基于拓扑优化的自发热体冷却用植入式导热路径设计方法. 力学学报, 2016, 48(1): 406-412 (Chen Wenjiong, Liu Shutian, Zhang Yongcun. Optimization design of conductive pathways for cooling a heat generating body with high conductive inserts. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 406-412 (in Chinese)
|
[32] |
Dan G. A tutorial on the adjoint method for inverse problems. Computer Methods in Applied Mechanics and Engineering, 2021, 380: 113810 doi: 10.1016/j.cma.2021.113810
|