Citation: | Wan Qiwen, Chen Xiaopeng, Hu Haibao, Du Peng. Inertial retraction of liquid film on moderately wettable plate. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1516-1522 doi: 10.6052/0459-1879-21-663 |
[1] |
Yarin AL. Drop impact dynamics: splashing, spreading, receding, bouncing. Annual Review of Fluid Mechanics, 2006, 38: 159-192 doi: 10.1146/annurev.fluid.38.050304.092144
|
[2] |
Smith FR, Nicloux C, Brutin D. Influence of the impact energy on the pattern of blood drip stains. Physical Review Fluids, 2018, 3(1): 013601 doi: 10.1103/PhysRevFluids.3.013601
|
[3] |
Laan N, De Bruin KG, Slenter D, et al. Bloodstain pattern analysis: implementation of a fluid dynamic model for position determination of victims. Scientific Reports, 2015, 5: 11461 doi: 10.1038/srep11461
|
[4] |
Damak M, Mahmoudi SR, Hyder MN, et al. Enhancing droplet deposition through in-situ precipitation. Nature Communications, 2016, 7: 1-9
|
[5] |
Xu Y, Vincent S, He QC, et al. Spread and recoil of liquid droplets impacting on solid surfaces with various wetting properties. Surface & Coatings Technology, 2019, 357: 140-152
|
[6] |
Lojewski B, Yang WW, Duan HX, et al. Design, fabrication, and characterization of linear multiplexed electrospray atomizers Micro-Machined from metal and polymers. Aerosol Science and Technology, 2013, 47(2): 146-152 doi: 10.1080/02786826.2012.734936
|
[7] |
Modak CD, Kumar A, Tripathy A, et al. Drop impact printing. Nature Communications, 2020, 11(1): 1-11 doi: 10.1038/s41467-019-13993-7
|
[8] |
Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces. Atomization and Sprays, 2001, 11(2): 155-165
|
[9] |
Xu L, Zhang WW, Nagel SR. Drop splashing on a dry smooth surface. Physical Review Letters, 2005, 94(18): 184505 doi: 10.1103/PhysRevLett.94.184505
|
[10] |
Josserand C, Thoroddsen ST. Drop impact on a solid surface. Annual Review of Fluid Mechanics, 2016, 48: 365-391 doi: 10.1146/annurev-fluid-122414-034401
|
[11] |
Xia Z, Xiao Y, Yang Z, et al. Droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by hybrid laser ablation and silanization process. Materials, 2019, 12(5): 765 doi: 10.3390/ma12050765
|
[12] |
Bennett T, Poulikakos D. Splat-quench solidification: estimating the maximum spreading of a droplet impacting a solid surface. Journal of Material Science, 1993, 28: 963-970 doi: 10.1007/BF00400880
|
[13] |
Clanet C, Beguin C, Richard D, et al. Maximal deformation of an impacting drop. Journal of Fluid Mechanics, 2004, 517: 199-208 doi: 10.1017/S0022112004000904
|
[14] |
黄海盟. 液滴撞击固体壁面的最大铺展. [硕士论文]. 西安: 西北工业大学, 2017
Huang Haimeng. Maximum spread of a droplet impacting a solid surfaces. [Master Thesis]. Xi 'an: Northwestern Polytechnical University, 2017(in Chinese))
|
[15] |
高珊, 曲伟, 姚伟. 喷雾冷却中液滴冲击壁面的流动和换热. 工程热物理学报, 2007, 28(1): 221-224 (Gao Shan, Qu Wei, Yao Wei. Flow and heat transfer of droplet impinging on hot flat surface during spray cooling. Journal of Engineering Thermophysics, 2007, 28(1): 221-224 (in Chinese)
Gao Shan, Qu Wei, Yao Wei. Flow and heat transfer of droplet impinging on hot flat surface during spray cooling. Journal of Engineering Thermophysics, 2007, 28(1): 221-224 (in Chinese)
|
[16] |
高淑蓉, 金佳鑫, 魏博建等. 液滴撞击疏水/超疏水表面防结冰技术研究进展及未来展望. 化工学报, 2021, 72(8): 3946-3957 (Gao Shurong, Jin Jiaxin, Wei Bojian, et al. Research progress and future prospects of anti-/de-icing technology for droplets impact on hydrophobic/superhydrophobic surfaces. CIESC Journal, 2021, 72(8): 3946-3957 (in Chinese)
Gao Shurong, Jin Jiaxin, Wei Bojian, et al. Research progress and future prospects of anti-/de-icing technology for droplets impact on hydrophobic/superhydrophobic surfaces. CIESC Journal, 2021, 72(8): 3946-3957 (in Chinese))
|
[17] |
Chu F, Luo J, Hao C, et al. Directional transportation of impacting droplets on wettability-controlled surfaces. Langmuir, 2020, 36(21): 5855-5862 doi: 10.1021/acs.langmuir.0c00601
|
[18] |
Bartolo D, Josserand C, Bonn D. Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. Journal of Fluid Mechanics, 2005, 545: 329-338 doi: 10.1017/S0022112005007184
|
[19] |
Wang F, Fang T. Retraction dynamics of water droplets after impacting upon solid surfaces from hydrophilic to superhydrophobic. Physical Review Fluids, 2020, 5(3): 033604 doi: 10.1103/PhysRevFluids.5.033604
|
[20] |
Richard D, Clanet C, Quéré D. Contact time of a bouncing drop. Nature, 2002, 417: 811
|
[21] |
Eggers J, Fontelos MA, Josserand C, et al. Drop dynamics after impact on a solid wall: Theory and simulations. Physics of Fluids, 2010, 22(6): 3432498
|
[22] |
Roisman IV, Rioboo R, Tropea C. Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458(2022): 1411-1430 doi: 10.1098/rspa.2001.0923
|
[23] |
Bird JC, Dhiman R, Kwon HM, et al. Reducing the contact time of a bouncing drop. Nature, 2013, 503: 385-388 doi: 10.1038/nature12740
|
[24] |
Li H, Fang W, Li Y, et al. Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces. Nature Communications, 2019, 10(1): 1-6 doi: 10.1038/s41467-018-07882-8
|
[25] |
Chu Z, Jiao W, Huang Y, et al. Directional rebound control of droplets on low-temperature regular and irregular wrinkled superhydrophobic surfaces. Applied Surface Science, 2020, 530: 147099 doi: 10.1016/j.apsusc.2020.147099
|
[26] |
Zhao Z, Li H, Hu X, et al. Steerable droplet bouncing for precise materials transportation. Advanced Materials Interfaces, 2019, 6(21): 1901033 doi: 10.1002/admi.201901033
|
[27] |
Liu M, Chen XP. Numerical study on the stick-slip motion of contact line moving on heterogeneous surfaces. Physics of Fluids, 2017, 29(8): 082102 doi: 10.1063/1.4996189
|
[28] |
Liu M, Chen XP. Morphological classification and dynamics of a two-dimensional drop sliding on a vertical plate. The European Physical Journal E, 2018, 41(8): 1-8
|
[29] |
Guo J, Chen XP, Shui L. Surface wave mechanism for directional motion of droplet on an obliquely vibrated substrate. Physics of Fluids, 2020, 32: 031701 doi: 10.1063/1.5143874
|
[30] |
Bartolo D, Josserand C, Bonn D. Singular jets and bubbles in drop impact. Physical Review Letters, 2006, 96(12): 124501 doi: 10.1103/PhysRevLett.96.124501
|
[31] |
Scheller BL, Bousfield DW. Newtonian drop impact with a solid-surface. AICHE Journal, 1995, 41(6): 1357-1367 doi: 10.1002/aic.690410602
|
[32] |
Abdulhamid A. Droplet impacting on a hydrophobic surface: Influence of surface wetting state on droplet behavior. Journal of Fluids Engineering-Transactions of the ASME, 2020, 142(7): 071205 doi: 10.1115/1.4046559
|
[33] |
Damak M, Varanasi K. Expansion and retraction dynamics in drop-on-drop impacts on nonwetting surfaces. Physical Review Fluids, 2018, 3(9): 093602 doi: 10.1103/PhysRevFluids.3.093602
|