Citation: | Guo Ziyi, Zhao Jianfu, Li Kai, Hu Wenrui. Bifurcation analysis of thermocapillary convection based on POD-Galerkin reduced-order method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1186-1198 doi: 10.6052/0459-1879-21-642 |
[1] |
Lappa M. Thermal Convection, Chichester. John Wiley & Sons, Ltd., 2009
|
[2] |
Hu WR, Tang ZM, Li K. Thermocapillary convection in floating zones. Applied Mechanics Reviews, 2008, 61(1): 010803 doi: 10.1115/1.2820798
|
[3] |
Duan L, Yin YL, Wang J, et al. Thermocapillary convection space experiment on the SJ-10 recoverable satellite. Journal of Visualized Experiments, 2020, 157: 59998
|
[4] |
Imaishi N, Ermakov MK, Shi WY. Effects of pr and pool curvature on thermocapillary flow instabilities in annular pool. International Journal of Heat and Mass Transfer, 2020, 149: 119103 doi: 10.1016/j.ijheatmasstransfer.2019.119103
|
[5] |
Mo DM, Zhang L, Ruan DF, et al. Aspect ratio dependence of thermocapillary flow instability of moderate-Prandtl number fluid in annular pools heated from inner cylinder. Microgravity Science and Technology, 2021, 33(6): 66 doi: 10.1007/s12217-021-09909-0
|
[6] |
Chen EH, Xu F. Transient thermocapillary convection flows in a rectangular cavity with an evenly heated lateral wall. Physics of Fluids, 2021, 33(1): 013602 doi: 10.1063/5.0034650
|
[7] |
Schwabe D, Benz S. Thermocapillary flow instabilities in an annulus under microgravity—Results of the experiment magia. Advances in Space Research, 2002, 29(4): 629-638 doi: 10.1016/S0273-1177(01)00654-8
|
[8] |
Bucchignani E, Mansutti D. Horizontal thermocapillary convection of succinonitrile: steady state, instabilities, and transition to chaos. Physical Review E, 2004, 69(5): 056319 doi: 10.1103/PhysRevE.69.056319
|
[9] |
Li K, Xun B, Hu WR. Some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers of finite extent. Physics of Fluids, 2016, 28(5): 054106 doi: 10.1063/1.4948400
|
[10] |
Jiang H, Duan L, Kang Q. A peculiar bifurcation transition route of thermocapillary convection in rectangular liquid layers. Experimental Thermal and Fluid Science, 2017, 88: 8-15 doi: 10.1016/j.expthermflusci.2017.03.015
|
[11] |
Chow SN, Hale JK. Methods of Bifurcation Theory. New York Berlin Heidelberg: Springer, 1982
|
[12] |
Seydel R. Practical Bifurcation and Stability Analysis. New York: Springer, 2010
|
[13] |
Marta N, Juan S. Continuation of bifurcations of periodic orbits for large-scale systems. SIAM Journal on Applied Dynamical Systems, 2015, 14(2): 674-698 doi: 10.1137/140981010
|
[14] |
Dijkstra HA, Wubs FW, Cliffe AK, et al. Numerical bifurcation methods and their application to fluid dynamics: Analysis beyond simulation. Communications in Computational Physics, 2014, 15(1): 1-45 doi: 10.4208/cicp.240912.180613a
|
[15] |
Juan SU, Marta N. Stationary flows and periodic dynamics of binary mixtures in tall laterally heated slots//Gelfgat A. Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics. Cham: Springer International Publishing, 2019: 171-216
|
[16] |
Juan SU, Marta N. Continuation of double Hopf points in thermal convection of rotating fluid spheres. SIAM Journal on Applied Dynamical Systems, 2021, 20(1): 208-231 doi: 10.1137/20M1333961
|
[17] |
Schmid PJ. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 2010, 656: 5-28 doi: 10.1017/S0022112010001217
|
[18] |
Lumley JL. The structure of inhomogeneous turbulent flows//Yaglom AM, Tartarsky VI, eds. Atmospheric Turbulence and Radio Wave Propagation
|
[19] |
寇家庆. 非定常气动力建模与流场降阶方法研究. [硕士论文]. 西安: 西北工业大学, 2018
Kou Jiaqing. Reduced-order modeling methods for unsteady aerodynamics and fluid flows. [Master's Thesis]. Xi'an: Northwestern Polytechnical University, 2018 (in Chinese))
|
[20] |
Podvin B, Quéré PL. Low-order models for the flow in a differentially heated cavity. Physics of Fluids, 2001, 13(11): 3204-3214 doi: 10.1063/1.1408919
|
[21] |
Ma X, Karniadakis GE. A low-dimensional model for simulating three-dimensional cylinder flow. Journal of Fluid Mechanics, 2002, 458: 181-190 doi: 10.1017/S0022112002007991
|
[22] |
Cai WH, Ma HH, Wang Y, et al. Development of pod reduced-order model and its closure scheme for 2D Rayleigh–Bénard convection. Applied Mathematical Modelling, 2019, 66: 562-575 doi: 10.1016/j.apm.2018.09.031
|
[23] |
冯俞楷, 杜小泽, 杨立军. 非稳态导热基于温度梯度的本征正交分解降维方法. 中国科学: 技术科学, 2018, 48(1): 39-47
Feng Yukai, Du Xiaoze, Yang Lijun. Extrapolating POD reduced-order model based on temperature gradient for unsteady heat conduction. Sci Sin Tech, 2018, 48: 39-47 (in Chinese)
|
[24] |
Jing CJ, Henry D, Hadid HB, et al. Low-order dynamical model for low-Prandtl number fluid flow in a laterally heated cavity. Physics of Fluids, 2003, 15(8): 2152-2162 doi: 10.1063/1.1577119
|
[25] |
Dijkstra HA. On the structure of cellular solutions in Rayleigh–Bénard–Marangoni flows in small-aspect-ratio containers. Journal of Fluid Mechanics, 1992, 243: 73-102 doi: 10.1017/S0022112092002647
|
[26] |
Xu JY, Zebib A. Oscillatory two- and three-dimensional thermocapillary convection. Journal of Fluid Mechanics, 1998, 364: 187-209 doi: 10.1017/S0022112098001232
|
[27] |
Kalb VL, Deane AE. An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models. Physics of Fluids, 2007, 19(5): 054106 doi: 10.1063/1.2723149
|
[28] |
Sirisup S, Karniadakis GE. A spectral viscosity method for correcting the long-term behavior of pod models. Journal of Computational Physics, 2004, 194(1): 92-116 doi: 10.1016/j.jcp.2003.08.021
|
[29] |
Bailon-Cuba J, Schumacher J. Low-dimensional model of turbulent Rayleigh-Bénard convection in a cartesian cell with square domain. Physics of Fluids, 2011, 23(7): 077101 doi: 10.1063/1.3610395
|
[30] |
Wang Y, Ma HH, Cai WH, et al. A POD-Galerkin reduced-order model for two-dimensional Rayleigh-Bénard convection with viscoelastic fluid. International Communications in Heat and Mass Transfer, 2020, 117: 104747 doi: 10.1016/j.icheatmasstransfer.2020.104747
|