Citation: | Liu Fengyin, Jiang Jingxi, Li Dongdong. Study on the evolution of liquid bridge force between flaky particles. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1660-1668 doi: 10.6052/0459-1879-21-628 |
[1] |
卢宁, William JL. 非饱和土力学. 韦昌富译. 北京: 高等教育出版社, 2012
(Lu Ning, William JL. Soil Mechanics for Unsaturated Soils. Wei Changfu trans. Beijing: Higher Education Press, 2012 (in Chinese)
|
[2] |
Fredlund DG, Rahardjo H. Soil Mechanics for Unsaturated Soils. John Wiley & Sons, 1993
|
[3] |
陈正汉. 重塑非饱和黄土的变形、强度、屈服和水量变化特性. 岩土工程报, 1999, 21(1): 82-90 (Chen Zhenghan. Deformation, strength, yield and water change characteristics of reshaped unsaturated loess. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 82-90 (in Chinese)
Chen Zhenghan. Deformation, strength, yield and water change characteristics of reshaped unsaturated loess. Chinese Journal of Geotechnical Engineering, 1999, 21(01): 82-90(in Chinese)
|
[4] |
黎澄生, 孔令伟, 柏巍等. 土-水特征曲线滞后阻塞模型. 岩土力学, 2018, 39(2): 598-604 (Li Chengsheng, Kong Lingwei, Bai Wei, et al. Hysteresis blocking model of soil-water characteristic curve. Rock Mechanics, 2018, 39(2): 598-604 (in Chinese)
Li Chengsheng, Kong Lingwei, Bai Wei, et al. Hysteresis blocking model of soil-water characteristic curve. Rock Mechanics, 2018, 39(2): 598-604(in Chinese)
|
[5] |
栾茂田, 李顺群, 杨庆. 非饱和土的理论土-水特征曲线. 岩土工程学报, 2005, 27(6): 611-615 (Luan Maotian, Li Shunqun, Yang Qing. Theoretical soil-water characteristic curve of unsaturated soil. Journal of Geotechnical Engineering, 2005, 27(6): 611-615 (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.06.001
Luan Maotian, Li Shunqun, Yang Qing. Theoretical soil-water characteristic curve of unsaturated soil. Journal of Geotechnical Engineering, 2005, 27(06): 611-615(in Chinese) doi: 10.3321/j.issn:1000-4548.2005.06.001
|
[6] |
刘艳, 赵成刚. 土水特征曲线滞后模型的研究. 岩土工程学报, 2008, 30(3): 399-405 (Liu Yan, Zhao Chenggang. Research on hysteresis model of soil-water characteristic curve. Journal of Geotechnical Engineering, 2008, 30(3): 399-405 (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.03.016
Liu Yan, Zhao Chenggang. Research on hysteresis model of soil-water characteristic curve. Journal of Geotechnical Engineering, 2008, 30(03): 399-405(in Chinese) doi: 10.3321/j.issn:1000-4548.2008.03.016
|
[7] |
贺炜, 赵明华, 陈永贵等. 土-水特征曲线滞后现象的微观机制与计算分析. 岩土力学, 2010, 31(4): 1078-1083 (He Wei, Zhao Minghua, Chen Yonggui, et al. Microscopic mechanism and calculation analysis of hysteresis of soil-water characteristic curve. Rock Mechanics, 2010, 31(4): 1078-1083 (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.04.012
He Wei, Zhao Minghua, Chen Yonggui, et al. Microscopic mechanism and calculation analysis of hysteresis of soil-water characteristic curve. Rock Mechanics, 2010, 31(04): 1078-1083(in Chinese) doi: 10.3969/j.issn.1000-7598.2010.04.012
|
[8] |
张昭, 刘奉银, 赵旭光等. 考虑应力引起孔隙比变化的土水特征曲线模型. 水利学报, 2013, 44(5): 578-585 (Zhang Zhao, Liu Fengyin, Zhao Xuguang, et al. Soil-water characteristic curve model considering the change of void ratio caused by stress. Journal of Hydraulic Engineering, 2013, 44(5): 578-585 (in Chinese) doi: 10.3969/j.issn.0559-9350.2013.05.013
Zhang Zhao, Liu Fengyin, Zhao Xuguang, et al. Soil-water characteristic curve model considering the change of void ratio caused by stress. Journal of Hydraulic Engineering, 2013, 44(5): 578-585(in Chinese) doi: 10.3969/j.issn.0559-9350.2013.05.013
|
[9] |
张鹏程, 汤连生, 姜力群等. 基质吸力与含水率及干密度定量关系研究. 岩石力学与工程学报, 2013, 32(S1): 2792-2797 (Zhang Pengcheng, Tang Liansheng, Jiang Liqundeng, et al. A study on the quantitative relationship between matrix suction, moisture content and dry density. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2792-2797 (in Chinese)
Zhang Pengcheng, Tang Liansheng, Jiang Liqundeng, et al. A Study on the quantitative relationship between matrix suction, moisture content and dry density. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2792-2797(in Chinese)
|
[10] |
孙德安, 高游. 不同制样方法非饱和土的持水特性研究. 岩土工程学报, 2015, 37(1): 91-97 (Sun Dean, Gao You. Research on water holding characteristics of unsaturated soil with different sample preparation methods. Journal of Geotechnical Engineering, 2015, 37(1): 91-97 (in Chinese)
Sun Dean, Gao You. Research on Water Holding Characteristics of Unsaturated Soil with Different Sample Preparation Methods. Journal of Geotechnical Engineering, 2015, 37(01): 91-97(in Chinese)
|
[11] |
蔡国庆, 盛岱超, 周安楠. 考虑初始孔隙比影响的非饱和土相对渗透系数方程. 岩土工程学报, 2014, 36(5): 827-835 (Cai Guoqing, Cheng Daichao, Zhou Annan. Equation of relative permeability coefficient of unsaturated soil considering the influence of initial porosity ratio. Journal of Geotechnical Engineering, 2014, 36(5): 827-835 (in Chinese)
Cai Guoqing, Cheng Daichao, Zhou Annan. Equation of Relative Permeability Coefficient of Unsaturated Soil Considering the Influence of Initial Porosity Ratio. Journal of Geotechnical Engineering, 2014, 36(05): 827-835(in Chinese)
|
[12] |
Lambert P, Chau A, Delchambre A, et al. Comparison between two capillary forces models. Langmuir, 2008, 24(7): 3157-3163 doi: 10.1021/la7036444
|
[13] |
Megias-Alguacil D, Gauckler LJ. Accuracy of the toroidal approximation for the calculus of concave and convex liquid bridges between particles. Granular Matter, 2011, 13(4): 487-492 doi: 10.1007/s10035-011-0260-9
|
[14] |
Pepin X, Rossetti D, Iveson SM, et al. Modeling the evolution and rupture of pendular liquid bridges in the presence of large wetting hysteresis. Journal of Colloid & Interface Science, 2000, 232(2): 289-297
|
[15] |
Fisher RA. On the capillary forces in an ideal soil correction of formulae given by W.B. Haines. The Journal of Agricultural Science, 1926, 16(3): 492-505 doi: 10.1017/S0021859600007838
|
[16] |
Lian G, Thornton C, Adams MJ. A theoretical study of the liquid bridge forces between two rigid spherical bodies. Journal of Colloid & Interface Science, 1993, 161(1): 138-147
|
[17] |
Orr FM, Scriven LE, Rivas AP. Pendular rings between solids: meniscus properties and capillary force. Journal of Fluid Mechanics, 1975, 67(4): 723-742 doi: 10.1017/S0022112075000572
|
[18] |
Nguyen HNG, Millet O, Gagneux G. On the capillary bridge between spherical particles of unequal size: analytical and experimental approaches. Continuum Mechanics & Thermodynamics, 2019, 31(1): 225-237
|
[19] |
Lambert P, Delchambre A. Parameters ruling capillary forces at the submillimetric scale. Langmuir, 2005, 21(21): 9537-9543 doi: 10.1021/la0507131
|
[20] |
Willett CD, Adams MJ, Johnson SA, et al. Capillary bridges between two spherical bodies. Langmuir, 2000, 16(24): 9396-9405 doi: 10.1021/la000657y
|
[21] |
Rossetti D, Pepin X, Simons SJR. Rupture energy and wetting behaviour of pendular liquid bridges in relation to the spherical agglomeration process. Journal of Colloid & Interface Science, 2003, 261(1): 161-169
|
[22] |
Lievano D, Velankar S, McCarthy JJ. The rupture force of liquid bridges in two and three particle systems. Powder Technology, 2017, 313(2): 18-26
|
[23] |
Wang JP, Gallo E, Franois B, et al. Capillary force and rupture of funicular liquid bridges between three spherical bodies. Powder Technology, 2016, 305(6): 89-98
|
[24] |
Sprakel J, Besseling NAM, Cohen Stuart MA, et al. Capillary adhesion in the limit of saturation: Thermodynamics, self-consistent field modeling and experiment. Langmuir, 2008, 24(4): 1308-1317 doi: 10.1021/la702222f
|
[25] |
庄大伟, 杨艺菲, 胡海涛等. 竖直平板间液桥形状的观测与预测模型开发. 化工学报, 2016, 67(6): 2224-2229 (Zhuang Dawei, Yang Yifei, Hu Haitao, et al. Visualization and prediction model on shape of liquid bridge. CIESC Journal, 2016, 67(6): 2224-2229 (in Chinese)
Zhuang Dawei, Yang Yifei, Hu Haitao, et al. Visualization and prediction model on shape of liquid bridge. CIESC Journal, 2016, 67(6): 2224-2229 (in Chinese)
|
[26] |
朱朝飞, 贾建援, 付红志等. 狭长平行板间液桥形态及受力研究. 工程力学, 2016, 33(6): 222-229 (Zhu Zhaofei, Jia Jianyuan, Fu Hongzhi, et al. A Study of shape and forces of liquid bridge between two slender parallel flat plates. Engineering Mechanics, 2016, 33(6): 222-229 (in Chinese)
Zhu Zhaofei, Jia Jianyuan, Fu Hongzhi, et al. A Study of shape and forces of liquid bridge between two slender parallel flat plates. Engineering Mechanics, 2016, 33(6): 222-229 (in Chinese)
|
[27] |
王学卫, 于洋. 重力影响下板间液桥断裂距离研究. 实验力学, 2012, 27(1): 70-76 (Wang Xuewei, Yu Yang. Study of gravitation effect on rupture distance of liquid bridge between two flat substrates. Journal of Experimental Mechanics, 2012, 27(1): 70-76 (in Chinese)
Wang Xuewei, Yu Yang. Study of gravitation effect on rupture distance of liquid bridge between two flat substrates. Journal of Experimental Mechanics, 2012, 27(1): 70-76 (in Chinese)
|
[28] |
于洋, 王学卫, 吴群. 基于Surface Evolver模拟液桥断裂距离. 医用生物力学, 2011, 26(5): 436-440
Yu Yang, Wang Xuewei, Wu Qun. Simulation of liquid bridge fracture distance based on Surface Evolver. Journal of Medical Biomechanics. 2011, 26(5): 436-440 (in Chinese)
|
[29] |
Brakke KA. The Surface Evolver. Experimental Mathematics, 1992, 1(2): 141-165 doi: 10.1080/10586458.1992.10504253
|
[30] |
Brakke KA. The surface evolver and the stability of liquid surfaces. Philosophical Transactions Mathematical Physical & Engineering Sciences, 1996, 354(1715): 2143-2157
|
[31] |
Fisher LR, Israelachvili JN. Experimental studies on the applicability of the Kelvin equation to highly curved concave menisci. Journal of Colloid & Interface Science, 1981, 80(2): 528-541
|
[32] |
Gagneux G, Millet O. Analytic calculation of capillary bridge properties deduced as an inverse problem from experimental data. Transport in Porous Media, 2014, 105(1): 117-139 doi: 10.1007/s11242-014-0363-y
|
[33] |
卢珍萍. 固体表面上液滴外观形貌的研究. [硕士学位论文]. 北京: 北京理工大学, 2016
Lu Zhenping. A study on appearance and morphology of liquid drops on solid surface. Beijing: Beijing Institute of Technology, 2016 (in Chinese)
|
[34] |
Tadrist L, Motte L, Rahli O, et al. Characterization of interface properties of fluids by evaporation of a capillary bridge. Royal Society Open Science, 2019, 6(12): 191608 doi: 10.1098/rsos.191608
|
[35] |
Nguyen HNG, Zhao CF, Millet O, et al. Effects of surface roughness on liquid bridge capillarity and droplet wetting. Powder Technology, 2021, 378: 487-496 doi: 10.1016/j.powtec.2020.10.016
|
[36] |
Anandarajah A, Amarasinghe PM. Microstructural investigation of soil suction and hysteresis of fine-grained soils. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 38-46 doi: 10.1061/(ASCE)GT.1943-5606.0000555
|
[37] |
Guan GS, Rahardjo H, Choon LE. Shear strength equations for unsaturated soil under drying and wetting. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(4): 594-606
|
[38] |
Souza EJD, Gao LC, McCarthy TJ, et al. Effect of contact angle hysteresis on the measurement of capillary forces. Langmuir the Acs Journal of Surfaces & Colloids, 2008, 24(4): 1391-1396
|
[39] |
Shi Z, Zhang Y, Liu M, et al. Dynamic contact angle hysteresis in liquid bridges. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018, 555: 365-371
|
[40] |
Neumann WA, David R, Zuo Y. Applied Surface Thermodynamics. Boca Raton, London: CRC Press, Taylor & Francis Group, 2011
|