Citation: | Cui Guangshun, Bao Chen, Li Yilei, Sun Jianhua, Du Kaikai. Experimental study on the effect of loading rate and geometric size on the fracture behavior of Chinese A508-III steel. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1970-1981. DOI: 10.6052/0459-1879-21-613 |
[1] |
Gu Z. History review of nuclear reactor safety. Annals of Nuclear Energy, 2018, 120: 682-690 doi: 10.1016/j.anucene.2018.06.023
|
[2] |
Jenkins B. Improving the safety and reliability of reactor pressure vessel steels. [PhD Thesis]. Oxford: University of Oxford, 2019
|
[3] |
Sun K, Wu X, Li G, et al. The fracture toughness properties of China manufactured reactor pressure vessel steels in transition temperature range//Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018, 51678: V06 AT06 A030
|
[4] |
曹昱澎. 压力容器用钢在韧脆转变区的断裂韧性预测方法研究. [博士论文]. 上海: 华东理工大学, 2012
Cao Yupeng. Prediction of fracture toughness in the ductile-to-brittle transition region of pressure vessel steels. [PhD Thesis]. Shanghai: East China University of Science and Technology, 2012 (in Chinese)
|
[5] |
叶想平, 刘仓理, 蔡灵仓等. 中子辐照金属材料的脆化模型研究. 力学学报, 2019, 51(5): 1538-1544 (Ye Xiangping, Liu Cangli, Cai lingcang, et al. A model of neutron irradiation embrittlement for metals. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1538-1544 (in Chinese)
Ye Xiangping, Liu Cangli, Cai lingcang, et al. A model of neutron irradiation embrittlement for metals. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51 (05): 1538-1544 (in Chinese)
|
[6] |
Kempf R, Troiani H, Fortis AM. Effect of lead factors on the embrittlement of RPV SA-508 cl3 steel. Journal of Nuclear Materials, 2013, 434(1-3): 411-416 doi: 10.1016/j.jnucmat.2012.12.004
|
[7] |
代鑫. 核压力容器用大锻件SA508-Ⅳ钢疲劳性能的研究. [博士论文]. 北京: 北京科技大学, 2021
Dai Xin. A study on fatigue properties of heavy forging SA508-IV steel used for nuclear pressure vessels. [PhD Thesis]. Beijing: University of Science and Technology Beijing, 2021 (in Chinese)
|
[8] |
李一磊, 姚迪, 乔红威等. 金属材料中低加载速率下的动态韧脆转变及断裂韧性测量. 力学学报, 2021, 53(2): 424-436 (Li Yilei, Yao Di, Qiao Hongwei, et al. Dynamic tough-brittle transition and fracture toughness measurement of metal under intermediate-low loading velocities. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 424-436 (in Chinese)
Li Yilei, Yao Di, Qiao Hongwei, et al. Dynamic tough-brittle transition and fracture toughness measurement of metal under intermediate-low loading velocities. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(02): 424-436 (in Chinese)
|
[9] |
Sharma S, Samal MK. Experimental investigation of scatter in fracture toughness data of SA516 Gr 70 steel in the ductile-to-brittle transition regime for high rate of loading using split Hopkinson pressure bar test setup. Engineering Failure Analysis, 2021, 122: 105288
|
[10] |
Roychowdhury S, Seifert HP, Spätig P, et al. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel. Journal of Nuclear Materials, 2016, 478: 343-364 doi: 10.1016/j.jnucmat.2016.05.033
|
[11] |
Zhou Z, Tong Z, Qian G, et al. Irradiation effect on impact fracture behavior of A508-3 steel in ductile-to-brittle transition range. Engineering Failure Analysis, 2019, 97: 836-843 doi: 10.1016/j.engfailanal.2019.01.053
|
[12] |
Kurishita H, Yamamoto T, Narui M, et al. Specimen size effects on ductile–brittle transition temperature in Charpy impact testing. Journal of Nuclear Materials, 2004, 329: 1107-1112
|
[13] |
Zhou Z, Tong Z, Qian G, et al. Specimen size effect on the ductile-brittle transition reference temperature of A508-3 steel. Theoretical and Applied Fracture Mechanics, 2019, 104: 102370 doi: 10.1016/j.tafmec.2019.102370
|
[14] |
潘建华. 冲击载荷作用下压力容器用金属材料动态断裂行为的研究. [博士论文]. 合肥: 中国科学技术大学, 2013
Pan Jianhua. Dynamic fracture behavior of pressure vessel metal materials under impact loads. [PhD Thesis]. Hefei: University of Science and Technology of China, 2013 (in Chinese)
|
[15] |
Wang C, Tong Z, Zhong W, et al. A method for directly measuring fracture toughness and determining reference temperature for RPV steels by Charpy impact test. Engineering Fracture Mechanics, 2021, 243: 107526 doi: 10.1016/j.engfracmech.2021.107526
|
[16] |
李一磊, 李朋洲, 姚迪等. 金属材料裂纹冲击韧性评定方法研究. 核动力工程, 2021, 42(5): 114-118 (Li Yilei, Li Pengzhou, Yao Di, et al. Research for evaluation method of crack’s impact toughness for metallic material. Nuclear Power Engineering, 2021, 42(5): 114-118 (in Chinese)
Li Yilei, Li Pengzhou, Yao Di, et al. Research for evaluation method of crack’s impact toughness for metallic material. Nuclear Power Engineering, 2021, 42(05): 114-118 (in Chinese)
|
[17] |
Betego´n C, Hancock JW. Two-parameter characterization of elastic-plastic crack-tipfields. International Journal of Applied Mechanics, 1973, 21(4): 263-277 doi: 10.1016/0022-5096(73)90024-0
|
[18] |
O'dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter-I. Structure of fields. Journal of the Mechanics and Physics of Solids, 1991, 39(8): 989-1015 doi: 10.1016/0022-5096(91)90049-T
|
[19] |
O'Dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter-II. Fracture applications. Journal of the Mechanics and Physics of Solids, 1992, 40(5): 939-963
|
[20] |
Chao YJ, Yang S, Sutton MA. On the fracture of solids characterized by one or two parameters: theory and practice. Journal of the Mechanics and Physics of Solids, 1994, 42(4): 629-647 doi: 10.1016/0022-5096(94)90055-8
|
[21] |
Guo W. Elastoplastic three dimensional crack border field-I. Singular structure of the field. Engineering Fracture Mechanics, 1993, 46(1): 93-104
|
[22] |
Guo W. Elastoplastic three dimensional crack border field-II. Asymptotic solution for the field. Engineering Fracture Mechanics, 1993, 46(1): 105-113
|
[23] |
Guo W. Elasto-plastic three-dimensional crack border field-III. Fracture parameters. Engineering Fracture Mechanics, 1995, 51(1): 51-71 doi: 10.1016/0013-7944(94)00215-4
|
[24] |
Chao YJ, Lam PS. Effects of crack depth, specimen size, and out-of-plane stress on the fracture toughness of reactor vessel steels. Journal of Pressure Vessel Technology, 1996, 118(4): 415-423
|
[25] |
Gong B, Xia C, Lacidogna G, et al. Constraint analysis of thickness effects on fracture resistance behavior of clamped single-edge notch tension specimen. Theoretical and Applied Fracture Mechanics, 2020, 110: 102802 doi: 10.1016/j.tafmec.2020.102802
|
[26] |
王兆希, 施惠基. 面外约束对韧性材料的断裂韧度的影响. 工程力学, 2007, 11: 19-24 (Wang Zhaoxi, Shi Huiji. Effect of out-of-plane constraint on ductile fracture toughness. Engineering Mechanics, 2007, 11: 19-24 (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.11.004
Wang Zhaoxi, Shi Huiji. Effect of out-of-plane constraint on ductile fracture toughness. Engineering Mechanics, 2007(11): 19-24 (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.11.004
|
[27] |
ISO 26203-2: 2011, Metallic materials-tensile testing at high strain rates-part 2: Servo-hydraulic and other test systems. Switzerland: International Organization for Standardization, 2011
|
[28] |
Lan L, Qiu C, Zhao D, et al. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel. Materials Science and Engineering A, 2011, 529: 192-200 doi: 10.1016/j.msea.2011.09.017
|
[29] |
Luo X, Chen X, Wang T, et al. Effect of morphologies of martensite–austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel. Materials Science and Engineering A, 2018, 710: 192-199 doi: 10.1016/j.msea.2017.10.079
|
[30] |
Chen BY, Shi YW. Studies on the temperature dependence of charpy V-notch initiation energies for a pipeline steel and its welds. International Journal of Pressure Vessels and Piping, 1989, 38(4): 275-292 doi: 10.1016/0308-0161(89)90078-1
|
[31] |
ASTM E1820-20, Standard test method for measurement of fracture toughness. West Conshohocken, PA, USA: ASTM International, 2020
|
[32] |
钟群鹏, 赵子华. 断口学. 北京: 高等教育出版社, 2006
Zhong Qunpeng, Zhao Zihua. Fractography. Beijing: Higher Education Press, 2006 (in Chinese)
|
[33] |
Das A, Tarafder S. Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel. Scripta Materialia, 2008, 59(9): 1014-1017 doi: 10.1016/j.scriptamat.2008.07.012
|
[34] |
Das A, Tarafder S. Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel. International Journal of Plasticity, 2009, 25(11): 2222-2247 doi: 10.1016/j.ijplas.2009.03.003
|
[35] |
Hu J, Du LX, Wang JJ, et al. Structure–mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling. Materials Science and Engineering A, 2013, 585: 197-204 doi: 10.1016/j.msea.2013.07.071
|
[1] | Wu Yuanjun, Xu Xikai, Bao Chen, Cai Lixun. EXPERIMENTAL STUDY ON DUCTILE-TO-BRITTLE TRANSITION OF RPV STEEL CONSIDERING GEOMETRIC SIZE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2363-2372. DOI: 10.6052/0459-1879-23-264 |
[2] | Zhao Yuhao, Du Jingtao, Chen Yilin, Liu Yang. DYNAMIC BEHAVIOR ANALYSIS OF THE AXIALLY LOADED BEAM WITH THE NONLINEAR SUPPORT AND ELASTIC BOUNDARY CONSTRAINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2529-2542. DOI: 10.6052/0459-1879-22-088 |
[3] | Gao Shan, Shi Donghua, Guo Yongxin. DISCRETE MOMENTUM CONSERVATION LAW OF GEOMETRICALLY EXACT BEAM IN HAMEL'S FRAMEWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1712-1719. DOI: 10.6052/0459-1879-21-092 |
[4] | Li Yilei, Yao Di, Qiao Hongwei, Li Xihua, Zhang Kun, Sun Lei, Yan Xiao, Li Pengzhou. DYNAMIC DUCTILE-BRITTLE TRANSITION AND FRACTURE TOUGHNESS MEASUREMENT OF METAL UNDER INTERMEDIATE-LOW LOADING VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 424-436. DOI: 10.6052/0459-1879-20-304 |
[5] | Su Wenzheng, Zhang Yongcun, Liu Shutian. TOPOLOGY OPTIMIZATION FOR GEOMETRIC STABILITY OF STRUCTURES WITH COMPENSATION DISPLACEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 214-222. DOI: 10.6052/0459-1879-12-295 |
[6] | Qi Zhaohui Fang Huiqing. Study on redundant constraints in multibody systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 390-399. DOI: 10.6052/0459-1879-2011-2-lxxb2009-596 |
[7] | Gao Tong Zhang Weihong Pierre Duysinx. Topology optimization of structures designed with multiphase materials: volume constraint or mass constraint?[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 296-305. DOI: 10.6052/0459-1879-2011-2-lxxb2010-303 |
[8] | A GEOMETRICAL MODEL FOR FINITE ELASTIC-PLASTIC DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(2): 204-212. DOI: 10.6052/0459-1879-1999-2-1995-028 |
[9] | OPTIMAL TOPOLOGY DESIONS OF TRUSSES WITH DISCRETE SIZE VARIABLES SUBJECTED TO MULTIPLE CONSTRAINTS AND LOADING CASES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(3): 365-369. DOI: 10.6052/0459-1879-1995-3-1995-442 |
[10] | ON TOPOLOGY OPTIMIZATION OF TRUSSES WITH MULTIPLE LOADING CONDITIONS AND BE-HAVIOUR CONSTRAINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(1): 59-70. DOI: 10.6052/0459-1879-1992-1-1995-712 |
1. |
陈怡纯,田海平,马国祯,陈纪仲. 湍流边界层均匀动量区统计分形特性的PIV实验研究. 力学学报. 2024(01): 34-44 .
![]() | |
2. |
高紫涵,程肖岐,范子椰,姜楠. 基于变间隔空间平均的等动量区分布研究. 力学学报. 2024(08): 2193-2202 .
![]() | |
3. |
程肖岐,范子椰,唐湛棋,白建侠,姜楠. 壁湍流等动量区空间分布的实验研究. 实验流体力学. 2024(04): 21-28 .
![]() | |
4. |
王永强,胡春宏,张鹏,杨胜发,胡江,李文杰. 三峡库区黄花城河段环流结构与涡尺度特征初探. 水科学进展. 2022(02): 253-263 .
![]() |