Citation: | Guo Shuaiqi, Liu Wen, Zhang Chen’an, Wang Famin. Design and optimization for hypersonic cone-derived waverider with blunted leading-edge. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1414-1428 doi: 10.6052/0459-1879-21-611 |
[1] |
Kuchemann D. The Aerodynamic Design of Aircraft. Oxford: Pergamon Press, 1978: 448-510
|
[2] |
Nonweiler TRF. Aerodynamic problems of manned space vehicles. Journal of Royal Aeronautical Society, 1959, 63: 521-528 doi: 10.1017/S0368393100071662
|
[3] |
Moore KC. The application of known flow fields to the design of wings with lifting upper surface at high supersonic speeds. RAE Technical Report, 1965
|
[4] |
Jones JG, Moore KC, Pike J, et al. A method for designing lifting configurations for high supersonic speeds using axisymmetric flow fields. Archive of Applied Mechanics, 1968, 37: 56-72
|
[5] |
Takashima N, Lewis MJ. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration//AIAA Aerospace Sciences Meeting & Exhibits, Reno, NV, 1994: 1-15
|
[6] |
Sobieczky H, Dougherty FC, Jones K. Hypersonic waverider design from given shock waves//First International Hypersonic Waverider Symposium, University of Maryland, 1990: 1-19
|
[7] |
Rodi PE. The osculating flowfield method of waverider geometry generation//43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005: 1-8
|
[8] |
贺旭照, 倪鸿礼. 密切内锥乘波体设计方法和性能分析. 力学学报, 2011, 43(5): 803-808
He Xuzhao, Ni Hongli, Osculating inward turning cone (OIC) wave rider-design methods and performance analysis. Chinese Journal of Theoretical and Applied Mechanics. 2011, 43(5): 803-808 (in Chinese))
|
[9] |
贺旭照, 倪鸿礼. 密切曲面锥乘波体——设计方法与性能分析. 力学学报, 2011, 43: 1077-1082
He Xuzhao, Ni Hongli. Osculating curved cone waverider: Design methods and performance analysis. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082 (in Chinese)
|
[10] |
卫峰, 丁国昊, 马志成等. 密切曲面锥导乘波体的设计与理论分析. 推进技术, 2021, 42(2): 298-308 (Wei Feng, Ding Guohao, Ma Zhicheng, et al. Design and theoretical analysis of osculating curve cone derived waverider. Journal of Propulsion Technology, 2021, 42(2): 298-308 (in Chinese)
|
[11] |
Zheng XG, Hu Z, Li Y, et al. Local-turning osculating cones method for waverider design. AIAA Journal, 2020, 58(8): 3499-3513 doi: 10.2514/1.J059139
|
[12] |
刘传振, 孟旭飞, 刘荣健等. 双后掠乘波体高超声速试验与数值分析. 航空学报, 2022, 43: 126015 (Liu Chuanzhen, Meng Xufei, Liu Rongjian, et al. Experimental and numerical investigation for hypersonic performance of double swept waverider. Acta Aeronautica et Astronautica Sinica, 2022, 43: 126015 (in Chinese)
|
[13] |
刘传振, 白鹏, 王骥飞等. 给定前缘线平面形状的密切锥乘波体设计方法. 力学学报, 2019, 51(4): 991-997 (Liu Chuanzhen, Bai Peng, Bai Jifei, et al. Osculating-cone waverider design by customizing the planform shape of leading edge. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 991-997 (in Chinese) doi: 10.6052/0459-1879-18-368
|
[14] |
Hu SY, Jiang CW, Gao ZX, et al. Combined-wedge waverider for airframe-propulsion integration. AIAA Journal, 2018, 56(8): 3348-3352
|
[15] |
Liu W, Zhang CA, Wang FM. Modification of hypersonic waveriders by vorticity-based boundary layer displacement thickness determination method. Aerospace Science and Technology, 2018, 75: 200-214
|
[16] |
Liu J, Liu Z, Wen X, et al. Novel osculating flowfield methodology for wide-speed range waverider vehicles across variable Mach number. Acta Astronautica, 2019, 162(5): 160-167
|
[17] |
Wang D, Wang JF, Li LF, et al. Novel volume-improved design method of large-slenderness-ratio cone-derived waveriders. AIAA Journal, 2020, 58(11): 4832-4847
|
[18] |
吴乔, 卢笙, 叶友达等. 一种给定容积空间的乘波构型参数化设计方法. 空气动力学学报, 2019, 37(5): 754-761 (Wu Qiao, Lu Sheng, Ye Youda, et al. A parametric design method for the waverider configuration with given volume. Acta Aerodynamic Sinica, 2019, 37(5): 754-761 (in Chinese)
|
[19] |
郑晓刚, 朱呈祥, 尤延铖. 基于局部偏转吻切方法的多级压缩乘波体设计. 力学学报, 2022, 54(1): 83-93 (Zheng Xiaogang, Zhu Chengxiang, You Yancheng. Design of multistage compression waverider based on the local- turning osculating cones method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 83-93 (in Chinese) doi: 10.6052/0459-1879-21-414
|
[20] |
Liu W, Zhang CA, Wang XP, et al. Parametric study on lateral-directional stability of hypersonic waverider. AIAA Journal, 2021, 59(8): 3025-3042
|
[21] |
Ding F, Liu J, Shen CB, et al. An overview of research on waverider design methodology. Acta Astronautica, 2017, 140: 190-205 doi: 10.1016/j.actaastro.2017.08.027
|
[22] |
Zhao ZT, Huang W, Yan L, et al. An overview of research on wide-speed range waverider configuration. Progress in Aerospace Sciences, 2020, 113: 100606
|
[23] |
Gillum MJ, Lewis MJ. Experimental results on a Mach 14 waverider with blunt leading edges. Journal of Aircraft, 1997, 34(3): 296-303 doi: 10.2514/2.2198
|
[24] |
陈小庆, 侯中喜, 刘建霞等. 边缘钝化对乘波体性能影响分析. 宇航学报, 2009, 30(4): 1334-1339 (Chen Xiaoqing, Hou Zhongxi, Liu Jianxia, et al. The blunt leading edge’s influence to the performance of waverider. Journal of Astrunautics, 2009, 30(4): 1334-1339 (in Chinese) doi: 10.3873/j.issn.1000-1328.2009.04.005
|
[25] |
Liu JX, Hou ZX, Ding GH, et al. Numerical and experimental study on waverider with blunt leading edge. Computers and Fluids, 2013, 84: 203-217 doi: 10.1016/j.compfluid.2013.06.005
|
[26] |
Bowcutt KG, Anderson JD, Capriotti D. Viscous optimized hypersonic waveriders//AIAA 25th Aerospace Sciences Meeting, Reno, Nevada, 1987: 1-18
|
[27] |
李维东, 韩汉桥, 陈文龙等. 考虑高空黏性干扰效应的乘波体气动性能工程预测方法研究. 宇航学报, 2011, 32(6): 1217-1223 (Li Weidong, Han Hanqiao, Chen Wenlong, et al. An engineering prediction method for aerodynamic performance of waverider with hypersonic viscous interaction. Journal of Astronautics, 2011, 32(6): 1217-1223 (in Chinese) doi: 10.3873/j.issn.1000-1328.2011.06.002
|
[28] |
Tincher DJ, Burnett DW. Hypersonic waverider test vehicle: A logical next step. Journal of Spacecraft and Rockets, 1994, 31(3): 392-399 doi: 10.2514/3.26451
|
[29] |
Liu W, Zhang CA, Han HQ, et al. Local piston theory with viscous correction and its application. AIAA Journal, 2017, 55: 942-954 doi: 10.2514/1.J055207
|
[30] |
刘文. 高超声速乘波体气动布局优化及稳定性研究. [博士论文]. 西安: 西北工业大学, 2018
Liu Wen. Study on aerodynamic design optimization and flight stability of hypersonic waveriders. [PhD Thesis]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese)
|
[31] |
Hammit AG, Bogdonoff SM. Hypersonic studies of the leading edge effect on the flow over a flat plate. Jet Propulsion, 1956, 26(4): 241-246
|
[32] |
刘文, 张陈安, 王发民等. 高超声速“准乘波体”构型优化设计方法. 中国科学:技术科学, 2019, 49(3): 255-267 (Liu Wen, Zhang Chen’an, Wang Famin, et al. Design method of a new hypersonic waverider configuration. Scientia Sinica Technologica, 2019, 49(3): 255-267 (in Chinese) doi: 10.1360/N092017-00373
|
[33] |
Cruz CI, Sova GJ. Improved tangent-cone method for the aerodynamic preliminary analysis system version of the hypersonic arbitrary-body program. NASA Technical Note, 1990
|
[34] |
Bertram MH. Hypersonic laminar viscous interaction effects on the aerodynamics of two-dimensional wedge and triangular planform wings. NASA Technical Note, 1966
|
[35] |
David DJ, Anderson JD. Reference temperature method and Reynolds analogy for chemically reacting non-equilibrium flowfields. Journal of Thermophysics and Heat Transfer, 1994, 89: 190-192
|
[36] |
Anderson JD. Hypersonic and High-Temperature Gas Dynamics. 2nd ed. New York: McGraw-Hill Book Co, 2006
|
[37] |
White FM. Viscous Fluid Flow. 3rd ed. New York: McGraw-Hill Book Co., 2006: 517
|