EI、Scopus 收录
中文核心期刊
Qin Mengfei, Shi Wei, Chai Wei, Fu Xing, Li Xin. Research on dynamic characteristics of large-scale monopile offshore wind turbine under typhoon event. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 881-891. DOI: 10.6052/0459-1879-21-606
Citation: Qin Mengfei, Shi Wei, Chai Wei, Fu Xing, Li Xin. Research on dynamic characteristics of large-scale monopile offshore wind turbine under typhoon event. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 881-891. DOI: 10.6052/0459-1879-21-606

RESEARCH ON DYNAMIC CHARACTERISTICS OF LARGE-SCALE MONOPILE OFFSHORE WIND TURBINE UNDER TYPHOON EVENT

  • Received Date: November 18, 2021
  • Accepted Date: February 27, 2022
  • Available Online: February 28, 2022
  • Large scale wind turbine is an important direction of offshore wind technology in China. The southeast coast is a vital base for the development of offshore wind. However, the impact of typhoon events, which frequently occurs in this area, can not be neglected. The turbulent properties of typhoon are different from the normal strong wind. Meanwhile, the high wind speed during the typhoon events can lead to large typhoon waves. The aim of present work is to study the dynamic characteristics of the large scale monopile offshore wind turbine (OWT) during different typhoon stages, considering the unique wind and wave fields caused by typhoon. The DTU 10 MW monopile-type OWT were investigated using an integrated software, Simulation Workbench for Marine Application (SIMA) and the numerical model is established. The results show that pitch control can effectively reduce the wind loads on the blade during the typhoon event, and the wind loads on the turbine supported by monopile foundation mainly comes from the tower. At the different stages of the typhoon, the large-scale monopile offshore wind turbine exhibits different dynamic characteristics. The tower movement during the entire typhoon process is controlled by the first-order nature frequency which was excited by waves. The dynamic load of the structure above the tower base is dominated by inertial loads. The response energy growth rate at the first-order frequency of the tower movement is decreasing as the wind speed is increasing. And the response energy transfer to low frequency and wave frequency. The dynamic load under the base is obviously affected by wave load and wind load, shear response is controlled by wave frequency while bending moment response is controlled by first order eigen frequency and it is also greatly affected by the wave frequency and low frequency induced by wind at the mudline below tower base.
  • [1]
    Global Wind Energy Council (GWEC). https://gwec.net/global-offshore-wind-report-2020/
    [2]
    刘天绍, 刘孙俊, 杨玺等. 1951—2015影响广东沿海台风的统计分析. 海洋预报, 2018, 35(4): 68-74 (Liu Tianshao, Liu Sunjun, Yang Xi, et al. Statistical analysis of the typhoon influencing Guangdong province during 1951—2015. Marine Forecasts, 2018, 35(4): 68-74 (in Chinese)
    [3]
    李朝, 侯一筠, 李水清等. 两类典型台风路径影响下的黄、渤海海浪场特征研究. 海洋与湖沼, 2021, 52(1): 51-65 (Li Chao, Hou Yijun, Li Shuiqing, et al. Characteristics of wave field in the yellow sea and the bohai sea under the influence of two typical typhoons. Oceanologia Et Limnologia Sinica, 2021, 52(1): 51-65 (in Chinese)
    [4]
    孙富学, 许向楠, 史文海等. 温州滨海平坦地貌近地台风特性实测研究. 工程力学, 2018, 35(9): 73-80 (Sun Fuxue, Xu Xiangnan, Shi Wenhai, et al. Field measurements of typhoon characteristics near Ground in Wenzhou coastal flat terrain. Engineering Mechanics, 2018, 35(9): 73-80 (in Chinese)
    [5]
    雷鹰, 李涛, 张建国等. 厦门地区台风风场特性的数值模拟. 工程力学, 2014, 31(1): 122-128 (Lei Ying, Li Tao, Zhang Jianguo, et al. Numerical simulation of the characteristics of typhoon wind-field in XIAMEN region. Engineering Mechanics, 2014, 31(1): 122-128 (in Chinese)
    [6]
    史文海, 董大治, 李正农. 沿海地区近地边界层强/台风的统计特征分析. 工程力学, 2013, 30(S1): 30-33 (Shi Wenhai, Dong Dazhi, Li Zhengnong. Statistical characteristics analysis of boundary layer strong wind or typhoon in coastal areas. Engineering Mechanics, 2013, 30(S1): 30-33 (in Chinese)
    [7]
    李利孝, 肖仪清, 宋丽莉等. 基于风观测塔和风廓线雷达实测的强台风黑格比风剖面研究. 工程力学, 2012, 29(9): 284-293 (Li Lixiao, Xiao Yiqing, Song Lili, et al. Study on wind profile of typhoon hagupit using wind observed tower and wind profile radar measurements. Engineering Mechanics, 2012, 29(9): 284-293 (in Chinese)
    [8]
    Li L, Xiao Y, Kareem A, et al. Modeling typhoon wind power spectra near sea surface based on measurements in the South China sea. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104: 565-576
    [9]
    Guo Y, Damiani R, Musial W. Simulaiting Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions. National Renewable Energy Laboratory, 2014
    [10]
    韩然, 王珑, 王同光等. 台风不同区域中的风力机动力响应特性研究. 太阳能学报, 2020, 41(10): 251-258 (Han Ran, Wang Long, Wang Tongguang, et al. Dynamic response characteristics of wind turbine in different regions of typhoon. Acta Energiae Solaris Sinica, 2020, 41(10): 251-258 (in Chinese)
    [11]
    Wang H, Ke ST, Wang T, et al. Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects. Renewable Energy, 2020, 153: 740-758 doi: 10.1016/j.renene.2020.02.013
    [12]
    李琪, 周文杰, 童建国等. 台风环境中典型海上风机结构的动力响应数值分析. 中国海洋平台, 2019, 34(3): 32-39 (Li Qi, Zhou Wenjie, Tong Jianguo, et al. Numerical analysis on dynamic response of typical structure of offshore wind turbines under typhoon. China Offshore Platform, 2019, 34(3): 32-39 (in Chinese) doi: 10.3969/j.issn.1001-4500.2019.03.006
    [13]
    Kim E. Offshore wind turbine loads under the coupled influence of wind, waves, and currents during hurricanes. [PhD Thesis]. Texas: Texas at Austin University, 2015
    [14]
    朱彬彬, 王滨, 李玉刚等. 台风作用下海上风机基础结构安全评价. 海洋工程, 2019, 37(3): 78-85 (Zhu Binbin, Wang Bin, Li Yugang, et al. Typhoon risk assessment of the substructures of offshore wind turbines. the Ocean Engineering, 2019, 37(3): 78-85 (in Chinese)
    [15]
    芦直跃, 马宏旺, 李玉韬等. 台风对海上风电单桩基础累积变形影响试验研究. 海洋技术学报, 2019, 38(6): 75-82 (Lu Zhiyue, Ma Hongwang, Li Yutao, et al. Experimental study on the effect of typhoons on accumulated deformation of the monopile foundation for offshore wind turbines. Ocean Technology, 2019, 38(6): 75-82 (in Chinese)
    [16]
    姜贞强, 何奔, 单治钢等. 黄海海域极端荷载下海上风力机结构累积变形及疲劳性状—3种典型基础对比研究. 太阳能学报, 2021, 42(4): 386-395 (Jiang Zhenqiang, He Ben, Shan Zhigang, et al. Cumulative deformation and fatigue behaviour of offshore wind turbine structure subjected under extreme loading in yellow sea-a comparative study between three typical foundations. Acta Energiae Solaris Sinica, 2021, 42(4): 386-395 (in Chinese)
    [17]
    孙肖菲, 马东, 苏冠瑜等. 海上风电大直径单桩基础固有频率影响因素的数值分析. 船海工程, 2021, 50(1): 99-103 (Sun Xiaofei, Ma Dong, Su Guanyu, et al. Numerical analysis of influencing factors on nature frequency of large-diameter single pile foundation of offshore wind power. Ship &Ocean Engineering, 2021, 50(1): 99-103 (in Chinese)
    [18]
    刘晨晨, 张琪, 李明广等. 波浪与地震荷载共同作用下桩的动力响应. 上海交通大学学报, 2021, 55(6): 638-644 (Liu Chenchen, Zhang Qi, Li Mingguang, et al. Dynamic response of pile at waterwave load and seismic load. Journal of Shanghai Jiaotong University, 2021, 55(6): 638-644 (in Chinese)
    [19]
    Bergua R , Robertson A, Jonkman J, et al. OC6 phase II: Verification of an advanced soil structure interaction model for offshore wind turbines, Wind Energy, 2021, in press, doi: 10.100z/we.2698
    [20]
    Bachynski EE, Page A, Katsikogiannis G, et al. Dynamic response of a large-diameter monopile considering 35-hour storm conditions//Proceedings of the ASME 38th International Conference on Ocean, Offshore and Arctic Engineering, 2019
    [21]
    赵丹平, 徐宝清. 风力机设计理论及方法. 北京: 北京大学出版社, 2012

    Zhao Danping, Xu Baoqing. Theory and Method of Wind Turbine Design. Beijing: Peking University Press, 2012 (in Chinese))
    [22]
    唐新姿, 王效禹, 袁可人等. 风速不确定性对风力机气动力影响量化研究. 力学学报, 2020, 52(1): 51-59 (Tang Xinzi, Wang Xiaoyu, Yuan Keren, et al. Quantitation study of influence of wind speed uncertainty on aerodynamic forces of wind turbine. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 51-59 (in Chinese)
    [23]
    李玉成, 滕斌. 波浪对海上建筑物的作用. 北京: 海洋出版社, 2015

    Li Yucheng, Teng Bin. Wave Action on Marine Structures. Beijing: Ocean press, 2015 (in Chinese)
    [24]
    Hu S, Zhao DS. Non-gaussian properties of 2 nd-order random waves. Journal of Engineering Mechanics-ASCE, 1993, 119(2): 344-364 doi: 10.1061/(ASCE)0733-9399(1993)119:2(344)
    [25]
    Vonkarman T. Progress in the statistical theory of turbulence. Journal of Marine Research, 1948, 7(3): 252-264
    [26]
    Kaimal JC. Horizontal velocity spectra in an unstable surface-layer. Journal of the Atmospheric Sciences, 1978, 35(1): 18-24 doi: 10.1175/1520-0469(1978)035<0018:HVSIAU>2.0.CO;2
    [27]
    Tieleman HW. Universality of velocity spectra. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 56(1): 55-69 doi: 10.1016/0167-6105(94)00011-2
    [28]
    Davenport AG. The spectrum of horizontal gustiness near the ground in high winds. Quarterly Journal of the Royal Meteorological Society, 1961, 87(372): 194-211 doi: 10.1002/qj.49708737208
    [29]
    Tao T, Shi P, Wang H. Spectral modelling of typhoon winds considering nexus between longitudinal and lateral components. Renewable Energy, 2020, 162: 2019-2030 doi: 10.1016/j.renene.2020.09.130
    [30]
    Solari G, Piccardo G. Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probabilistic Engineering Mechanics, 2001, 16(1): 73-86 doi: 10.1016/S0266-8920(00)00010-2
    [31]
    侯凤国, 王春江, 李向民等. 基于AR法的摩天轮结构脉动风速数值模拟. 力学季刊, 2014, 35(2): 362-368 (Hou Fengguo, Wang Chunjiang, Li Xiangmin, et al. Numerical simulation of the fluctuating wind velocity for wheel structure based on AR model. Chinese Quarterly of Mechanic, 2014, 35(2): 362-368 (in Chinese)
    [32]
    罗俊杰, 韩大建. 谐波合成法模拟随机风场的优化算法. 华南理工大学学报, 2007, 7: 105-109 (Luo Junjie, Han Dajian. Optimized algorithm of wave superposition method to simulate stochastic wind field. Journal of South China University of Technology, 2007, 7: 105-109 (in Chinese)
    [33]
    陈法波, 李昕, 周晶. 近海风力涡轮机所受随机空气动力荷载模拟研究. 太阳能学报, 2011, 32(10): 1528-1532 (Chen Fabo, Li Xin, Zhou Jing. Simulation of random aerodynamic loads of offshore wind turbine. Acta Energiae Solaris Sinica, 2011, 32(10): 1528-1532 (in Chinese)
    [34]
    余聿修, 柳淑学. 随机波浪及其工程应用. 大连: 大连理工大学出版社, 2011

    Yu Yuxiu, Liu Shuxe. Random Wave and Its Applications to Engineering. Dalian: Dalian University of Technology Press, 2011 (in Chinese)
    [35]
    Young IR. A review of the sea state generated by hurricanes. Marine Structures, 2003, 16(3): 201-218 doi: 10.1016/S0951-8339(02)00054-0
    [36]
    Roger B. Specification document for OC6 phaseⅡ: Verification of an advanced soil-structure interaction model for offshore wind turbines. NREL/TP-5000-79938, 2021
    [37]
    Ren Z, Verma AS, Li Y, et al. Offshore wind turbine operations and maintenance: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2021, 144: 110886 doi: 10.1016/j.rser.2021.110886
  • Related Articles

    [1]Chen Jiacheng, Chen Tairan, Han Lei, Geng Hao, Tan Shulin. EXPERIMENTAL INVESTIGATION ON DYNAMIC CHARACTERISTICS OF LIQUID NITROGEN SINGLE BUBBLE IN THE FREE FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2387-2400. DOI: 10.6052/0459-1879-22-144
    [2]Xu Shun, Zhao Weiwen, Wan Decheng. NUMERICAL STUDY OF DYNAMIC CHARACTERISTICS FOR OFFSHORE WIND TURBINE UNDER COMPLEX ATMOSPHERIC INFLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 872-880. DOI: 10.6052/0459-1879-21-693
    [3]Sun Jialiang, Tian Qiang, Hu Haiyan. ADVANCES IN DYNAMIC MODELING AND OPTIMIZATION OF FLEXIBLE MULTIBODY SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1565-1586. DOI: 10.6052/0459-1879-19-212
    [4]Yu Xiaodong, Yuan Tengfei, Li Daige, Qu Hang, Zheng Xuhang. DYNAMIC CHARACTERISTICS OF HYDROSTATIC THRUST BEARING WITH DOUBLE RECTANGULAR CAVITY UNDER EXTREME WORKING CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 899-907. DOI: 10.6052/0459-1879-18-041
    [5]Huang Yixin, Tian Hao, Zhao Yang. DYNAMIC ANALYSIS OF A ROTATING FLEXIBLE BEAM WITH ELASTIC BOUNDARY CONDITIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 963-971. DOI: 10.6052/0459-1879-16-083
    [6]Zhao Yu, Wang Guoyu, Huang Biao, Hu Changli, Chen Guanghao, Wu Qin. STUDY OF TURBULENT VORTEX AND HYDRAULIC DYNAMICS IN TRANSIENT SHEET/CLOUD CAVITATING FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 191-200. DOI: 10.6052/0459-1879-13-177
    [7]Zongmin Hu, Zonglin Jiang. Wave dynamic processes in cellular detonation reflection from wedges[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 33-41. DOI: 10.6052/0459-1879-2007-1-2005-431
    [8]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
    [9]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
    [10]THE GASDYNAMICAL ANALYSIS OF GAS-LUBRICATED SLIDER BEARINGS UNDER HIGH KNUDSEN NUMBER CONDITIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(1): 8-15. DOI: 10.6052/0459-1879-1993-1-1995-608
  • Cited by

    Periodical cited type(5)

    1. 陈真涛,徐泽文,杨孟凯,邓洪银,周枫. 台风浪激励下的Spar型海上漂浮式风电机组结构降载控制. 风能. 2024(04): 62-67 .
    2. 闫建国,杨灿,黄柳生,程正顺. 强台风环境的工程化模拟研究. 风能. 2024(10): 90-98 .
    3. 朱魁星,李志川,李宁,杨立争,唐朝,张建华. 紧急停机过程中海上风机结构振动特性分析. 船舶工程. 2024(11): 161-168 .
    4. 英玺蓬,耿东岭,曹慧鑫,张凯仑,步宇峰,杨志勋,阎军. 基于NIAH的螺旋骨架复合柔性低温管道等效力学性能分析. 振动与冲击. 2023(13): 10-16 .
    5. 王安庆. 基于流固耦合的海上风机桩基础受力性能分析. 电工技术. 2022(23): 19-23 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (867) PDF downloads (113) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return