EI、Scopus 收录
中文核心期刊
Cao Leilei, Wu Jianhua, Fan Hao, Zhang Chuanzeng, Sun Linlin. Multi-objective topology optimization of phononic crystals considering manufacturing constraint. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1136-1145. DOI: 10.6052/0459-1879-21-605
Citation: Cao Leilei, Wu Jianhua, Fan Hao, Zhang Chuanzeng, Sun Linlin. Multi-objective topology optimization of phononic crystals considering manufacturing constraint. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1136-1145. DOI: 10.6052/0459-1879-21-605

MULTI-OBJECTIVE TOPOLOGY OPTIMIZATION OF PHONONIC CRYSTALS CONSIDERING MANUFACTURING CONSTRAINT

  • Received Date: November 18, 2021
  • Accepted Date: January 23, 2022
  • Available Online: January 24, 2022
  • Topology optimization of phononic crystals can achieve the structures with the targeted band-gap characteristics, which provides potential applications in the vibration reduction and sound insulation. However, the topology optimization results of phononic crystals often have isolated material elements, which are rather difficult to be manufactured. In this paper, a manufacturing-constrained topology optimization model considering both the band-gap performance and the manufacturability for the multi-objective topology optimization of two-dimensional (2D) multi-phase phononic crystals is proposed. The objective functions for maximizing the band-gap width in a specified frequency range and minimizing the structural weight are established. The manufacturing constraint is additionally introduced based on the connectivity analysis of the micro-structures of the constituent materials. The optimization problem is solved by the finite element method (FEM) and the non-dominated sorting genetic algorithm II (NSGA-II). The rationality and effectiveness of the proposed model and strategy are demonstrated by representative numerical examples. The results show that the isolated material elements can be avoided effectively by introducing an additional manufacturing constraint. Moreover, the optimized results can ensure both the band-gap performance and the manufacturability requirement. Compared with the results of the single-objective optimization (SOOP), the multi-objective optimization (MOOP) shows great advantages, since it can obtain non-dominated solution sets and achieve a balance between different optimization objectives.
  • [1]
    田源, 葛浩, 卢明辉等. 声学超构材料及其物理效应的研究进展. 物理学报, 2019, 68(19): 194301 (Tian Yuan, Ge Hao, Lu Minghui, et al. Research advances in acoustic metamaterials. Acta Physica Sinica, 2019, 68(19): 194301 (in Chinese) doi: 10.7498/aps.68.20190850
    [2]
    曹蕾蕾, 朱旺, 武建华等. 基于人工神经网络的声子晶体逆向设计. 力学学报, 2021, 53(7): 1992-1998 (Cao Leilei, Zhu Wang, Wu Jianhua, et al. Inverse design of phononic crystals by artificial neural networks. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1992-1998 (in Chinese) doi: 10.6052/0459-1879-21-142
    [3]
    Sigmund O, Jensen JS. Systematic design of phononic band-gap materials and structures by topology optimization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 361(1806): 1001-1019 doi: 10.1098/rsta.2003.1177
    [4]
    Huang Y, Liu S, Zhao J. A gradient-based optimization method for the design of layered phononic band-gap materials. Acta Mechanica Solida Sinica, 2016, 29(4): 429-443 doi: 10.1016/S0894-9166(16)30245-2
    [5]
    Yang XW, Lee JS, Kim YY. Effective mass density based topology optimization of locally resonant acoustic metamaterials for bandgap maximization. Journal of Sound and Vibration, 2016, 383: 89-107 doi: 10.1016/j.jsv.2016.07.022
    [6]
    Zhang X, He J, Takezawa A, et al. Robust topology optimization of phononic crystals with random field uncertainty. International Journal for Numerical Methods in Engineering, 2018, 115(9): 1154-1173 doi: 10.1002/nme.5839
    [7]
    Li YF, Huang X, Meng F, et al. Evolutionary topological design for phononic band gap crystals. Structural and Multidisciplinary Optimization, 2016, 54(3): 595-617 doi: 10.1007/s00158-016-1424-3
    [8]
    Wang K, Liu Y, Wang B. Ultrawide band gap design of phononic crystals based on topological optimization. Physica B: Condensed Matter, 2019, 571: 263-272 doi: 10.1016/j.physb.2019.07.012
    [9]
    Gazonas GA, Weile DS, Wildman R, et al. Genetic algorithm optimization of phononic bandgap structures. International Journal of Solids and Structures, 2006, 43(18-19): 5851-5866 doi: 10.1016/j.ijsolstr.2005.12.002
    [10]
    钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用. 物理学报, 2006, 55(1): 275-280 (Zhong Huilin, Wu Fugen, Yao Lining. Application of genetic algorithm in optimization of band gap of two-dimensional phononic crystals. Acta Physica Sinica, 2006, 55(1): 275-280 (in Chinese) doi: 10.3321/j.issn:1000-3290.2006.01.049
    [11]
    Bilal OR, Hussein MI. Ultrawide phononic band gap for combined in-plane and out-of-plane waves. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 84(6): 065701 doi: 10.1103/PhysRevE.84.065701
    [12]
    Dong HW, Su XX, Wang YS, et al. Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Structural and Multidisciplinary Optimization, 2014, 50(4): 593-604 doi: 10.1007/s00158-014-1070-6
    [13]
    刘宗发, 吴斌, 何存富. 最优二维固/固声子晶体带隙特性研究. 固体力学学报, 2015, 36(4): 283-289 (Liu Zongfa, Wu Bin, He Cunfu. The characteristics of optimal two-dimensional solid/solid phononic crystals. Chinese Journal of Solid Mechanics, 2015, 36(4): 283-289 (in Chinese)
    [14]
    刘坚, 陈俊煌, 夏百战等. 区间模型下声子晶体的带隙优化研究. 振动与冲击, 2018, 37(17): 115-121 (Liu Jian, Chen Junhuang, Xia Baizhan, et al. Bandgap optimization of phononic crystal based on interval model. Journal of Vibration and Shock, 2018, 37(17): 115-121 (in Chinese)
    [15]
    Chen L, Guo Y, Yi H. Optimization study of bandgaps properties for two-dimensional chiral phononic crystals base on lightweight design. Physics Letters A, 2021, 388(11): 127054
    [16]
    Xie L, Xia B, Huang G, et al. Topology optimization of phononic crystals with uncertainties. Structural and Multidisciplinary Optimization, 2017, 56(6): 1319-1339 doi: 10.1007/s00158-017-1723-3
    [17]
    Xie L, Xia B, Liu J, et al. An improved fast plane wave expansion method for topology optimization of phononic crystals. International Journal of Mechanical Sciences, 2017, 120: 171-181 doi: 10.1016/j.ijmecsci.2016.11.023
    [18]
    Han XK, Zhang Z. Bandgap design of three-phase phononic crystal by topological optimization. Wave Motion, 2020, 93: 102496 doi: 10.1016/j.wavemoti.2019.102496
    [19]
    Dong HW, Su XX, Wang YS, et al. Topology optimization of two-dimensional asymmetrical phononic crystals. Physics Letters A, 2014, 378(4): 434-441 doi: 10.1016/j.physleta.2013.12.003
    [20]
    Hussein MI, Hamza K, Hulbert GM, et al. Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Structural and Multidisciplinary Optimization, 2006, 31(1): 60-75 doi: 10.1007/s00158-005-0555-8
    [21]
    Dong HW, Su XX, Wang YS. Multi-objective optimization of two-dimensional porous phononic crystals. Journal of Physics D: Applied Physics, 2014, 47(15): 155301 doi: 10.1088/0022-3727/47/15/155301
    [22]
    Dong HW, Wang YS, Wang YF, et al. Reducing symmetry in topology optimization of two-dimensional porous phononic crystals. AIP Advances, 2015, 5(11): 117149 doi: 10.1063/1.4936640
    [23]
    Xu W, Ning J, Lin Z, et al. Multi-objective topology optimization of two-dimensional multi-phase microstructure phononic crystals. Materials Today Communications, 2020, 22: 100801 doi: 10.1016/j.mtcomm.2019.100801
    [24]
    Qiu K, Jin J. Multi-objective optimization of two-dimensional phononic bandgap materials and structures using genetic algorithms. International Journal of Computational Methods, 2021, 18(6): 2140002 doi: 10.1142/S0219876221400028
    [25]
    Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197 doi: 10.1109/4235.996017
    [26]
    Hirsekorn M. Small-size sonic crystals with strong attenuation bands in the audible frequency range. Applied Physics Letters, 2004, 84(17): 3364-3366 doi: 10.1063/1.1723688
    [27]
    Wang G, Shao LH, Liu YZ, et al. Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals. Chinese Physics, 2006, 15(8): 1843-1848 doi: 10.1088/1009-1963/15/8/036
    [28]
    Li W, Meng F, Li YF, et al. Topological design of 3D phononic crystals for ultra-wide omnidirectional bandgaps. Structural and Multidisciplinary Optimization, 2019, 60(6): 2405-2415 doi: 10.1007/s00158-019-02329-0
    [29]
    Dong HW, Zhao SD, Wang YS, et al. Robust 2D/3D multi-polar acoustic metamaterials with broadband double negativity. Journal of the Mechanics and Physics of Solids, 2020, 137: 103889 doi: 10.1016/j.jmps.2020.103889
    [30]
    Dong HW, Zhao SD, Wang YS, et al. Topology optimization of anisotropic broadband double-negative elastic metamaterials. Journal of the Mechanics and Physics of Solids, 2017, 105: 54-80 doi: 10.1016/j.jmps.2017.04.009
    [31]
    Liang S, Gao L, Zheng Y, et al. A transitional connection method for the design of functionally graded cellular materials. Applied Sciences, 2020, 10(21): 7449 doi: 10.3390/app10217449
  • Related Articles

    [1]Huang Xinyu, Tang Huayuan, Wang Lei. RECENT PROGRESS ON SOME FUNDAMENTAL MECHANICAL PROPERTIES OF TPMS STRUCTURES BASED ON ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3099-3115. DOI: 10.6052/0459-1879-24-205
    [2]Hu Yanan, Yu Huan, Wu Shengchuan, Ao Ni, Kan Qianhua, Wu Zhengkai, Kang Guozheng. MACHINE LEARNED MECHANICAL PROPERTIES PREDICTION OF ADDITIVELY MANUFACTURED METALLIC ALLOYS: PROGRESS AND CHALLENGES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 1892-1915. DOI: 10.6052/0459-1879-23-542
    [3]Xi Yu, Zhang Qiang, Zhang Xinyue, Liu Xiaochuan, Guo Yazhou. DYNAMIC MECHANICAL BEHAVIOR OF ADDITIVE MANUFACTURING TC4 ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 425-444. DOI: 10.6052/0459-1879-21-418
    [4]Yi Min, Chang Ke, Liang Chenguang, Zhou Liucheng, Yang Yangyiwei, Yi Xin, Xu Baixiang. COMPUTATIONAL STUDY OF EVOLUTION AND FATIGUE DISPERSITY OF MICROSTRUCTURES BY ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3263-3273. DOI: 10.6052/0459-1879-21-389
    [5]Xiao Wenjia, Xu Yuxiang, Song Lijun. PHASE-FIELD STUDY ON THE EVOLUTION OF MICROSTRUCTURE OF THE MOLTEN POOL FOR ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3252-3262. DOI: 10.6052/0459-1879-21-364
    [6]Chen Zekun, Jiang Jiaxi, Wang Yujia, Zeng Yongpan, Gao Jie, Li Xiaoyan. DEFECTS, MICROSTRUCTURES AND MECHANICAL PROPERTIES OF MATERIALS FABRICATED BY METAL ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3190-3205. DOI: 10.6052/0459-1879-21-472
    [7]Zhu Jihong, Cao Yinfeng, Zhai Xingyue, Moumni Ziad, Zhang Weihong. MICROMECHANICAL STUDY OF THE HIGH CYCLE FATIGUE PROPERTY OF ADDITIVE-MANUFACTURED 316 STEEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3181-3189. DOI: 10.6052/0459-1879-21-396
    [8]Wang Chao, Xu Bin, Duan Zunyi, Rong Jianhua. ADDITIVE MANUFACTURING-ORIENTED STRESS MINIMIZATION TOPOLOGY OPTIMIZATION WITH CONNECTIVITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1070-1080. DOI: 10.6052/0459-1879-20-389
    [9]Qi Zhaohui Fang Huiqing. Study on redundant constraints in multibody systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 390-399. DOI: 10.6052/0459-1879-2011-2-lxxb2009-596
    [10]Gao Tong Zhang Weihong Pierre Duysinx. Topology optimization of structures designed with multiphase materials: volume constraint or mass constraint?[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 296-305. DOI: 10.6052/0459-1879-2011-2-lxxb2010-303
  • Cited by

    Periodical cited type(5)

    1. 王燕,朱奕筱,吴圣川,亢战. 基于分析与设计序列迭代方法的三维声子晶体拓扑优化及参数分析. 振动与冲击. 2025(04): 97-104 .
    2. 邱克鹏,陈智谋,张建刚,张卫红,燕群,孙向洋,彭涛. 基于形状记忆合金声子晶体的带隙优化设计. 力学学报. 2023(06): 1278-1287 . 本站查看
    3. 孙维鹏,刘宸涵,郁小彬,胡珅,钟可欣,赵道利. 钝体表面附着物对低速水流压电俘能器性能影响研究. 力学学报. 2023(07): 1463-1472 . 本站查看
    4. 陈昊宇,汪琳阁,陈名松. 基于遗传算法的防波通道拓扑优化. 新一代信息技术. 2023(16): 21-25 .
    5. 陈新华,张晨,陈猛,郭振坤,郝天琪. 分形凹角蜂窝结构声子晶体振动带隙特性. 人工晶体学报. 2022(08): 1343-1352+1360 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (1518) PDF downloads (149) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return