Citation: | Cao Leilei, Wu Jianhua, Fan Hao, Zhang Chuanzeng, Sun Linlin. Multi-objective topology optimization of phononic crystals considering manufacturing constraint. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1136-1145. DOI: 10.6052/0459-1879-21-605 |
[1] |
田源, 葛浩, 卢明辉等. 声学超构材料及其物理效应的研究进展. 物理学报, 2019, 68(19): 194301 (Tian Yuan, Ge Hao, Lu Minghui, et al. Research advances in acoustic metamaterials. Acta Physica Sinica, 2019, 68(19): 194301 (in Chinese) doi: 10.7498/aps.68.20190850
|
[2] |
曹蕾蕾, 朱旺, 武建华等. 基于人工神经网络的声子晶体逆向设计. 力学学报, 2021, 53(7): 1992-1998 (Cao Leilei, Zhu Wang, Wu Jianhua, et al. Inverse design of phononic crystals by artificial neural networks. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1992-1998 (in Chinese) doi: 10.6052/0459-1879-21-142
|
[3] |
Sigmund O, Jensen JS. Systematic design of phononic band-gap materials and structures by topology optimization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 361(1806): 1001-1019 doi: 10.1098/rsta.2003.1177
|
[4] |
Huang Y, Liu S, Zhao J. A gradient-based optimization method for the design of layered phononic band-gap materials. Acta Mechanica Solida Sinica, 2016, 29(4): 429-443 doi: 10.1016/S0894-9166(16)30245-2
|
[5] |
Yang XW, Lee JS, Kim YY. Effective mass density based topology optimization of locally resonant acoustic metamaterials for bandgap maximization. Journal of Sound and Vibration, 2016, 383: 89-107 doi: 10.1016/j.jsv.2016.07.022
|
[6] |
Zhang X, He J, Takezawa A, et al. Robust topology optimization of phononic crystals with random field uncertainty. International Journal for Numerical Methods in Engineering, 2018, 115(9): 1154-1173 doi: 10.1002/nme.5839
|
[7] |
Li YF, Huang X, Meng F, et al. Evolutionary topological design for phononic band gap crystals. Structural and Multidisciplinary Optimization, 2016, 54(3): 595-617 doi: 10.1007/s00158-016-1424-3
|
[8] |
Wang K, Liu Y, Wang B. Ultrawide band gap design of phononic crystals based on topological optimization. Physica B: Condensed Matter, 2019, 571: 263-272 doi: 10.1016/j.physb.2019.07.012
|
[9] |
Gazonas GA, Weile DS, Wildman R, et al. Genetic algorithm optimization of phononic bandgap structures. International Journal of Solids and Structures, 2006, 43(18-19): 5851-5866 doi: 10.1016/j.ijsolstr.2005.12.002
|
[10] |
钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用. 物理学报, 2006, 55(1): 275-280 (Zhong Huilin, Wu Fugen, Yao Lining. Application of genetic algorithm in optimization of band gap of two-dimensional phononic crystals. Acta Physica Sinica, 2006, 55(1): 275-280 (in Chinese) doi: 10.3321/j.issn:1000-3290.2006.01.049
|
[11] |
Bilal OR, Hussein MI. Ultrawide phononic band gap for combined in-plane and out-of-plane waves. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 84(6): 065701 doi: 10.1103/PhysRevE.84.065701
|
[12] |
Dong HW, Su XX, Wang YS, et al. Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Structural and Multidisciplinary Optimization, 2014, 50(4): 593-604 doi: 10.1007/s00158-014-1070-6
|
[13] |
刘宗发, 吴斌, 何存富. 最优二维固/固声子晶体带隙特性研究. 固体力学学报, 2015, 36(4): 283-289 (Liu Zongfa, Wu Bin, He Cunfu. The characteristics of optimal two-dimensional solid/solid phononic crystals. Chinese Journal of Solid Mechanics, 2015, 36(4): 283-289 (in Chinese)
|
[14] |
刘坚, 陈俊煌, 夏百战等. 区间模型下声子晶体的带隙优化研究. 振动与冲击, 2018, 37(17): 115-121 (Liu Jian, Chen Junhuang, Xia Baizhan, et al. Bandgap optimization of phononic crystal based on interval model. Journal of Vibration and Shock, 2018, 37(17): 115-121 (in Chinese)
|
[15] |
Chen L, Guo Y, Yi H. Optimization study of bandgaps properties for two-dimensional chiral phononic crystals base on lightweight design. Physics Letters A, 2021, 388(11): 127054
|
[16] |
Xie L, Xia B, Huang G, et al. Topology optimization of phononic crystals with uncertainties. Structural and Multidisciplinary Optimization, 2017, 56(6): 1319-1339 doi: 10.1007/s00158-017-1723-3
|
[17] |
Xie L, Xia B, Liu J, et al. An improved fast plane wave expansion method for topology optimization of phononic crystals. International Journal of Mechanical Sciences, 2017, 120: 171-181 doi: 10.1016/j.ijmecsci.2016.11.023
|
[18] |
Han XK, Zhang Z. Bandgap design of three-phase phononic crystal by topological optimization. Wave Motion, 2020, 93: 102496 doi: 10.1016/j.wavemoti.2019.102496
|
[19] |
Dong HW, Su XX, Wang YS, et al. Topology optimization of two-dimensional asymmetrical phononic crystals. Physics Letters A, 2014, 378(4): 434-441 doi: 10.1016/j.physleta.2013.12.003
|
[20] |
Hussein MI, Hamza K, Hulbert GM, et al. Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Structural and Multidisciplinary Optimization, 2006, 31(1): 60-75 doi: 10.1007/s00158-005-0555-8
|
[21] |
Dong HW, Su XX, Wang YS. Multi-objective optimization of two-dimensional porous phononic crystals. Journal of Physics D: Applied Physics, 2014, 47(15): 155301 doi: 10.1088/0022-3727/47/15/155301
|
[22] |
Dong HW, Wang YS, Wang YF, et al. Reducing symmetry in topology optimization of two-dimensional porous phononic crystals. AIP Advances, 2015, 5(11): 117149 doi: 10.1063/1.4936640
|
[23] |
Xu W, Ning J, Lin Z, et al. Multi-objective topology optimization of two-dimensional multi-phase microstructure phononic crystals. Materials Today Communications, 2020, 22: 100801 doi: 10.1016/j.mtcomm.2019.100801
|
[24] |
Qiu K, Jin J. Multi-objective optimization of two-dimensional phononic bandgap materials and structures using genetic algorithms. International Journal of Computational Methods, 2021, 18(6): 2140002 doi: 10.1142/S0219876221400028
|
[25] |
Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197 doi: 10.1109/4235.996017
|
[26] |
Hirsekorn M. Small-size sonic crystals with strong attenuation bands in the audible frequency range. Applied Physics Letters, 2004, 84(17): 3364-3366 doi: 10.1063/1.1723688
|
[27] |
Wang G, Shao LH, Liu YZ, et al. Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals. Chinese Physics, 2006, 15(8): 1843-1848 doi: 10.1088/1009-1963/15/8/036
|
[28] |
Li W, Meng F, Li YF, et al. Topological design of 3D phononic crystals for ultra-wide omnidirectional bandgaps. Structural and Multidisciplinary Optimization, 2019, 60(6): 2405-2415 doi: 10.1007/s00158-019-02329-0
|
[29] |
Dong HW, Zhao SD, Wang YS, et al. Robust 2D/3D multi-polar acoustic metamaterials with broadband double negativity. Journal of the Mechanics and Physics of Solids, 2020, 137: 103889 doi: 10.1016/j.jmps.2020.103889
|
[30] |
Dong HW, Zhao SD, Wang YS, et al. Topology optimization of anisotropic broadband double-negative elastic metamaterials. Journal of the Mechanics and Physics of Solids, 2017, 105: 54-80 doi: 10.1016/j.jmps.2017.04.009
|
[31] |
Liang S, Gao L, Zheng Y, et al. A transitional connection method for the design of functionally graded cellular materials. Applied Sciences, 2020, 10(21): 7449 doi: 10.3390/app10217449
|
[1] | Huang Xinyu, Tang Huayuan, Wang Lei. RECENT PROGRESS ON SOME FUNDAMENTAL MECHANICAL PROPERTIES OF TPMS STRUCTURES BASED ON ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3099-3115. DOI: 10.6052/0459-1879-24-205 |
[2] | Hu Yanan, Yu Huan, Wu Shengchuan, Ao Ni, Kan Qianhua, Wu Zhengkai, Kang Guozheng. MACHINE LEARNED MECHANICAL PROPERTIES PREDICTION OF ADDITIVELY MANUFACTURED METALLIC ALLOYS: PROGRESS AND CHALLENGES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 1892-1915. DOI: 10.6052/0459-1879-23-542 |
[3] | Xi Yu, Zhang Qiang, Zhang Xinyue, Liu Xiaochuan, Guo Yazhou. DYNAMIC MECHANICAL BEHAVIOR OF ADDITIVE MANUFACTURING TC4 ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 425-444. DOI: 10.6052/0459-1879-21-418 |
[4] | Yi Min, Chang Ke, Liang Chenguang, Zhou Liucheng, Yang Yangyiwei, Yi Xin, Xu Baixiang. COMPUTATIONAL STUDY OF EVOLUTION AND FATIGUE DISPERSITY OF MICROSTRUCTURES BY ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3263-3273. DOI: 10.6052/0459-1879-21-389 |
[5] | Xiao Wenjia, Xu Yuxiang, Song Lijun. PHASE-FIELD STUDY ON THE EVOLUTION OF MICROSTRUCTURE OF THE MOLTEN POOL FOR ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3252-3262. DOI: 10.6052/0459-1879-21-364 |
[6] | Chen Zekun, Jiang Jiaxi, Wang Yujia, Zeng Yongpan, Gao Jie, Li Xiaoyan. DEFECTS, MICROSTRUCTURES AND MECHANICAL PROPERTIES OF MATERIALS FABRICATED BY METAL ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3190-3205. DOI: 10.6052/0459-1879-21-472 |
[7] | Zhu Jihong, Cao Yinfeng, Zhai Xingyue, Moumni Ziad, Zhang Weihong. MICROMECHANICAL STUDY OF THE HIGH CYCLE FATIGUE PROPERTY OF ADDITIVE-MANUFACTURED 316 STEEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3181-3189. DOI: 10.6052/0459-1879-21-396 |
[8] | Wang Chao, Xu Bin, Duan Zunyi, Rong Jianhua. ADDITIVE MANUFACTURING-ORIENTED STRESS MINIMIZATION TOPOLOGY OPTIMIZATION WITH CONNECTIVITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1070-1080. DOI: 10.6052/0459-1879-20-389 |
[9] | Qi Zhaohui Fang Huiqing. Study on redundant constraints in multibody systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 390-399. DOI: 10.6052/0459-1879-2011-2-lxxb2009-596 |
[10] | Gao Tong Zhang Weihong Pierre Duysinx. Topology optimization of structures designed with multiphase materials: volume constraint or mass constraint?[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 296-305. DOI: 10.6052/0459-1879-2011-2-lxxb2010-303 |
1. |
王燕,朱奕筱,吴圣川,亢战. 基于分析与设计序列迭代方法的三维声子晶体拓扑优化及参数分析. 振动与冲击. 2025(04): 97-104 .
![]() | |
2. |
邱克鹏,陈智谋,张建刚,张卫红,燕群,孙向洋,彭涛. 基于形状记忆合金声子晶体的带隙优化设计. 力学学报. 2023(06): 1278-1287 .
![]() | |
3. |
孙维鹏,刘宸涵,郁小彬,胡珅,钟可欣,赵道利. 钝体表面附着物对低速水流压电俘能器性能影响研究. 力学学报. 2023(07): 1463-1472 .
![]() | |
4. |
陈昊宇,汪琳阁,陈名松. 基于遗传算法的防波通道拓扑优化. 新一代信息技术. 2023(16): 21-25 .
![]() | |
5. |
陈新华,张晨,陈猛,郭振坤,郝天琪. 分形凹角蜂窝结构声子晶体振动带隙特性. 人工晶体学报. 2022(08): 1343-1352+1360 .
![]() |