EI、Scopus 收录
Volume 54 Issue 5
May  2022
Turn off MathJax
Article Contents
Zhang Shengting, Li Jing, Chen Zhangxing, Zhang Tao, Wu Keliu, Feng Dong, Bi Jianfei, Li Xiangfang. Study on snap-off mechanism and simulation during gas-liquid immiscible displacement. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1429-1442 doi: 10.6052/0459-1879-21-576
Citation: Zhang Shengting, Li Jing, Chen Zhangxing, Zhang Tao, Wu Keliu, Feng Dong, Bi Jianfei, Li Xiangfang. Study on snap-off mechanism and simulation during gas-liquid immiscible displacement. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1429-1442 doi: 10.6052/0459-1879-21-576


doi: 10.6052/0459-1879-21-576
  • Received Date: 2021-11-05
  • Accepted Date: 2022-02-28
  • Available Online: 2022-03-01
  • Publish Date: 2022-05-01
  • Studying the mechanism of phase interface snap-off during gas liquid immiscible displacement and its influencing factors have great significance in the field of enhanced oil and gas recovery such as gas driving, gas water alternation and foam driving. In this work, based on the original pseudopotential lattice Boltzmann model, we improved the fluid-fluid force scheme, added the fluid-solid force, coupled the Redlich-Kwong (RK) equation of state, and used the exact difference method (EDM) to add the external forces to the LBM framework. As well as verified the accuracy of the model by calibrating the thermodynamic consistency of the model and simulating a series of two phase systems such as testing the interfacial tension, static equilibrium contact angle and retention of the liquid phase at the corner. Based on the modified pseudopotential lattice Boltzmann model, we have carried out gas-liquid immiscible displacement simulations in a pore-throat-pore system, and the results have shown that: the snap-off phenomenon is related to the displacement pressure difference, pore-throat length ratio and pore-throat width ratio, and the snap-off phenomenon occurs only when the displacement pressure difference is within a certain range. When the displacement pressure difference is larger than the upper limit of the critical displacement pressure difference, the snap-off will be inhibited even if the snap-off condition predicted by the classical static rule has been reached; When the displacement pressure difference is less than the lower limit of the critical displacement pressure difference, it cannot overcome the "pinning" effect of the capillary tube and results in ineffective displacement. For the pore-throat structure with constant pore-throat width ratio, the displacement pressure difference range in which the snap-off phenomenon occurs increases as the pore-throat length ratio increases; For the pore-throat structure with constant pore-throat length ratio, the displacement pressure difference range in which the snap-off phenomenon occurs increases as the pore-throat width ratio decreases.


  • loading
  • [1]
    Yun W, Kovscek AR. Microvisual investigation of polymer retention on the homogeneous pore network of a micromodel. Journal of Petroleum Science Engineering, 2015, 128: 115-127 doi: 10.1016/j.petrol.2015.02.004
    柳占立, 庄茁, 孟庆国等. 页岩气高效开采的力学问题与挑战. 力学学报, 2017, 49(3): 507-516 (Liu Zhanli, Zhuang Zhuo, Meng Qingguo, et al. Problems and challenges of mechanics in shale gas efficient exploitation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516 (in Chinese)
    袁士义, 王强, 李军诗等. 注气提高采收率技术进展及前景展望. 石油学报, 2020, 41(12): 1623-1632 (Yuan Shiyi, Wang Qiang, Li Junshi, et al. Technology progress and prospects of enhanced oil recovery by gas injection. Acta Petrolei Sincia, 2020, 41(12): 1623-1632 (in Chinese) doi: 10.7623/syxb202012014
    高云丛, 赵密福, 王建波等. 特低渗油藏CO2非混相驱生产特征与气窜规律. 石油勘探与开发, 2014, 41(1): 79-85 (Gao Yuncong, Zhao Mifu, Wang Jianbo, et al. Performance and gas breakthrough during CO2 immiscible flooding in ultra-low permeability reservoirs. Petroleum Exploration and Development, 2014, 41(1): 79-85 (in Chinese)
    Kong D, Gao Y, Sarma H, et al. Experimental investigation of immiscible water-alternating-gas injection in ultra-high water-cut stage reservoir. Advances in Geo-Energy Research, 2021, 5(2): 139-152 doi: 10.46690/ager.2021.02.04
    Roof JG. Snap-off of oil droplets in water-wet pores. Society of Petroleum Engineers Journal, 1970, 10(1): 85-90 doi: 10.2118/2504-PA
    Gauglitz PA, StLaurent CM, Radke CJ. Experimental determination of gas-bubble breakup in a constricted cylindrical capillary. Industrial & Engineering Chemistry Research, 1988, 27(7): 1282-1291
    Ransohoff TC, Gauglitz PA, Radke CJ. Snap-off of gas bubbles in smoothly constricted noncircular capillaries. AIChE Journal, 1987, 33(5): 753-765 doi: 10.1002/aic.690330508
    Tsai TM, Miksis MJ. Dynamics of a drop in a constricted capillary tube. Journal of Fluid Mechanics, 2016, 274(274): 197-217
    Deng W, Cardenas MB, Bennett PC. Extended Roof snap-off for a continuous nonwetting fluid and an example case for supercritical CO2. Advances in Water Resources, 2014, 64: 34-46 doi: 10.1016/j.advwatres.2013.12.001
    Deng W, Balhoff M, Cardenas MB. Influence of dynamic factors on nonwetting fluid snap-off in pores. Water Resources Research, 2015, 51(11): 9182-9189 doi: 10.1002/2015WR017261
    Tian J, Kang YL, Xi ZY, et al. Real-time visualization and investigation of dynamic gas snap-off mechanisms in 2-D micro channels. Fuel, 2020, 279: 118232 doi: 10.1016/j.fuel.2020.118232
    Cha LM, Xie CY, Feng QH, et al. Geometric criteria for the snap-off of a non-wetting droplet in pore-throat channels with rectangular cross-sections. Water Resources Research, 2021, 57(7): e2020WR029476
    Tetteh JT, Cudjoe SE, Aryana SA, et al. Investigation into fluid-fluid interaction phenomena during low salinity waterflooding using a reservoir-on-a-chip microfluidic model. Journal of Petroleum Science and Engineering, 2021, 196: 108074 doi: 10.1016/j.petrol.2020.108074
    Wu YN, Fang SS, Dai CL, et al. Investigation on bubble snap-off in 3-D pore-throat micro-structures. Journal of Industrial and Engineering Chemistry, 2017, 54: 69-74 doi: 10.1016/j.jiec.2017.05.019
    Xiong QR, Baychev TG, Jivkov AP. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. Journal of Contaminant Hydrology, 2016, 192: 101-117 doi: 10.1016/j.jconhyd.2016.07.002
    Monaghan JJ. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, 1992, 30(1): 543-574 doi: 10.1146/annurev.aa.30.090192.002551
    Armstrong RT, Berg S, Dinariev O, et al. Modeling of pore-scale two-phase phenomena using density functional hydrodynamics. Transport in Porous Media, 2016, 112(3): 577-607 doi: 10.1007/s11242-016-0660-8
    Raeini AQ, Blunt MJ, Bijeljic B. Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. Journal of Computational Physics, 2012, 231(17): 5653-5668 doi: 10.1016/j.jcp.2012.04.011
    Chen SY, Doolen GD. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998, 30(1): 329-364 doi: 10.1146/annurev.fluid.30.1.329
    Raeini AQ, Bijeljic B, Blunt MJ. Numerical modelling of sub-pore scale events in two-phase flow through porous media. Transport in Porous Media, 2014, 101(2): 191-213 doi: 10.1007/s11242-013-0239-6
    Starnoni M, Pokrajac D. Numerical study of the effects of contact angle and viscosity ratio on the dynamics of snap-off through porous media. Advances in Water Resources, 2018, 111: 70-85 doi: 10.1016/j.advwatres.2017.10.030
    Zhang CW, Yuan ZY, Matsushita S, et al. Interpreting dynamics of snap-off in a constricted capillary from the energy dissipation principle. Physics of Fluids, 2021, 33(3): 032112 doi: 10.1063/5.0044756
    张嫚嫚, 孙姣, 陈文义. 一种基于几何重构的Youngs-VOF耦合水平集追踪方法. 力学学报, 2019, 51(3): 775-786 (Zhang Manman, Sun Jiao, Chen Wenyi. An interface tracking method of coupled Youngs-VOF and level set based on geometric reconstruction. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 775-786 (in Chinese)
    李庆, 余悦, 唐诗. 多相格子Boltzmann方法及其在相变传热中的应用. 科学通报, 2020, 65(17): 1677-1693 (Li Qing, Yu Yue, Tang Shi. Multiphase lattice Boltzmann method and its applications in phase-change heat transfer. Chinese Science Bulletin, 2020, 65(17): 1677-1693 (in Chinese) doi: 10.1360/TB-2019-0769
    臧晨强, 娄钦. 复杂微通道内非混相驱替过程的格子 Boltzmann方法. 物理学报, 2017, 66(13): 154-162 (Zang Chenqiang, Lou Qin. Lattice Boltzmann simulation of immiscible displacement in the complex micro-channel. Acta Physica Sinica, 2017, 66(13): 154-162 (in Chinese)
    Rothman DH, Keller JM. Immiscible cellular-automaton fluids. Journal of Statistical Physics, 1988, 52(3): 1119-1127
    Shan XW, Chen HD. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993, 47(3): 1815 doi: 10.1103/PhysRevE.47.1815
    Swift MR, Osborn WR, Yeomans JM. Lattice Boltzmann simulation of nonideal fluids. Physical Review Letters, 1995, 75(5): 830 doi: 10.1103/PhysRevLett.75.830
    He XY, Shan XW, Doolen GD. Discrete Boltzmann equation model for nonideal gases. Physical Review E, 1998, 57(1): R13 doi: 10.1103/PhysRevE.57.R13
    张磊, 康立新, 景文龙等. 基于孔隙-喉道双通道模型的油液两相流动形态分析. 中国石油大学学报(自然科学版), 2020, 44(5): 89-93 (Zhang Lei, Kang Lixin, Jing Wenlong, et al. Flow behavior analysis of oil-water two-phase flow in pore throat doublet model. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(5): 89-93 (in Chinese)
    赵玉龙, 刘香禺, 张烈辉等. 致密砂岩气藏气液流动规律及储层干化作用机理. 天然气工业, 2020, 40(9): 70-79 (Zhao Yulong, Liu Xiangyu, Zhang Liehui, et al. Laws of gas and water flow and mechanism of reservoir drying in tight sandstone gas reservoirs. Natural Gas Industry B, 2020, 40(9): 70-79 (in Chinese)
    Alpak FO, Zacharoudiou I, Berg S, et al. Direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice Boltzmann method on general-purpose graphics processing units. Computational Geosciences, 2019, 23(5): 849-880 doi: 10.1007/s10596-019-9818-0
    Wei B, Hou J, Sukop MC, et al. Flow behaviors of emulsions in constricted capillaries: a Lattice Boltzmann simulation study. Chemical Engineering Science, 2020, 227: 115925 doi: 10.1016/j.ces.2020.115925
    Zhang T, Javadpour F, Li J, et al. Pore-scale perspective of gas/water two-phase flow in shale. SPE Journal, 2021, 26(2): 828-846 doi: 10.2118/205019-PA
    Bhatnagar PL, Gross EP, Krook MA model for collision processes in gases. I Small amplitude processes in charged and neutral one-component systems. Physical Review, 1954, 94(3): 511
    Qian YH, d'Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters) , 1992, 17(6): 479 doi: 10.1209/0295-5075/17/6/001
    Gong S, Cheng P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Computers & Fluids, 2012, 53: 93-104
    Chen L, Kang QJ, Mu YT, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. International Journal of Heat and Mass Transfer, 2014, 76: 210-236 doi: 10.1016/j.ijheatmasstransfer.2014.04.032
    Mukherjee A, Basu DN, Mondal PK. Algorithmic augmentation in the pseudopotential-based lattice Boltzmann method for simulating the pool boiling phenomenon with high-density ratio. Physical Review E, 2021, 103(5): 053302 doi: 10.1103/PhysRevE.103.053302
    Huang HB, Li ZT, Liu SS, et al. Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media. International Journal for Numerical Methods in Fluids, 2009, 61(3): 341-354 doi: 10.1002/fld.1972
    Yuan P, Schaefer L. Equations of state in a lattice Boltzmann model. Physics of Fluids, 2006, 18(4): 042101 doi: 10.1063/1.2187070
    Huang HB, Sukop M, Lu XY. Multiphase Lattice Boltzmann Methods: Theory and Application. John Wiley & Sons, 2015
    Kupershtokh AL, Medvedev DA, Karpov DI. On equations of state in a lattice Boltzmann method. Computers & Mathematics with Applications, 2009, 58(5): 965-974
    何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用. 北京: 科学出版, 2009

    He Yaling, Wang Yong, Li Qing. Theory and Application of Lattice Boltzmann Method. Beijing: Science Press, 2009 (in Chinese))
    Krüger T, Kusumaatmaja H, Kuzmin A, et al. The lattice Boltzmann method. Springer International Publishing, 2017, 10: 4-15
    Huang JW, Yin XL, Barrufet M, et al. Lattice Boltzmann simulation of phase equilibrium of methane in nanopores under effects of adsorption. Chemical Engineering Journal, 2021, 419: 129625 doi: 10.1016/j.cej.2021.129625
    Huang HB, Krafczyk M, Lu XY. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2011, 84(2): 046710
    史冬岩, 王志凯, 张阿漫. 一种模拟气液两相流的格子波尔兹曼改进模型. 力学学报, 2014, 46(2): 224-233 (Shi Dongyan, Wang Zhikai, Zhang Aman. A novel lattice boltzmann model simulating gas-liquid two-phase flow. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 224-233 (in Chinese)
    胡五龙, 刘国峰, 晏石林等. 土壤水分布的孔隙尺度格子玻尔兹曼模拟研究. 力学学报, 2021, 53(2): 568-579 (Hu Wulong, Liu Guofeng, Yan Shilin, et al. Pore-scale lattice Boltzmann modeling of soil water Distribution. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 568-579 (in Chinese)
    Li Q, Luo KH, Kang QJ, et al. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Physical Review E, 2014, 90(5): 053301 doi: 10.1103/PhysRevE.90.053301
    Kovscek AR, Radke CJ. Gas bubble snap-off under pressure-driven flow in constricted noncircular capillaries. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1996, 117(1-2): 55-76
    Li J, Li XF, Wang XZ, et al. Water distribution characteristic and effect on methane adsorption capacity in shale clay. International Journal of Coal Geology, 2016, 159: 135-154 doi: 10.1016/j.coal.2016.03.012
    Li J, Li XF, Wu KL, et al. Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay. International Journal of Coal Geology, 2017, 179: 253-268 doi: 10.1016/j.coal.2017.06.008
    Li J, Li XF, Wu KL, et al. Water sorption and distribution characteristics in clay and shale: effect of surface force. Energy & Fuels, 2016, 30(11): 8863-8874
    李靖, 李相方, 王香增等. 页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影响. 力学学报, 2016, 48(5): 1217-1228 (Li Jing, Li Xiangfang, Wang Xiangzeng, et al. Effect of water distribution on methane adsorption capacity in shale clay. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1217-1228 (in Chinese)
    李靖, 李相方, 李莹莹等. 储层含水条件下致密砂岩/页岩无机质纳米孔隙气相渗透率模型. 力学学报, 2015, 47(6): 932-944 (Li Jing, Li Xiangfang, Li Yingying, et al. Model for gas transport in nanopores of shale and tight formation under reservoir condition. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 932-944 (in Chinese)
    Li J, Chen ZX, Wu KL, et al. Effect of water saturation on gas slippage in circular and angular pores. AIChE Journal, 2018, 64(9): 3529-3541 doi: 10.1002/aic.16196
    宋付权, 胡箫, 朱根民等. 纳米阵列中气体驱替液体的流动特征. 力学学报, 2018, 50(3): 553-560 (Song Fuquan, Hu Xiao, Zhu Genmin, et al. The characteristics of water flow displaced by gas in nano arrays. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 553-560 (in Chinese)
    Wei B, Wang YY, Wen YB, et al. Bubble breakup dynamics and flow behaviors of a surface-functionalized nanocellulose based nanofluid stabilized foam in constricted microfluidic devices. Journal of Industrial and Engineering Chemistry, 2018, 68: 24-32 doi: 10.1016/j.jiec.2018.07.025
    Si T. Dynamic behavior of droplet formation in dripping mode of capillary flow focusing. Capillarity, 2021, 4(3): 45-49 doi: 10.46690/capi.2021.03.01
    Liu HH, Zhang YH. Droplet formation in microfluidic cross-junctions. Physics of Fluids, 2011, 23(8): 082101 doi: 10.1063/1.3615643
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (631) PDF downloads(117) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint