Citation: | Zhang Shengting, Li Jing, Chen Zhangxing, Zhang Tao, Wu Keliu, Feng Dong, Bi Jianfei, Li Xiangfang. Study on snap-off mechanism and simulation during gas-liquid immiscible displacement. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1429-1442 doi: 10.6052/0459-1879-21-576 |
[1] |
Yun W, Kovscek AR. Microvisual investigation of polymer retention on the homogeneous pore network of a micromodel. Journal of Petroleum Science Engineering, 2015, 128: 115-127 doi: 10.1016/j.petrol.2015.02.004
|
[2] |
柳占立, 庄茁, 孟庆国等. 页岩气高效开采的力学问题与挑战. 力学学报, 2017, 49(3): 507-516 (Liu Zhanli, Zhuang Zhuo, Meng Qingguo, et al. Problems and challenges of mechanics in shale gas efficient exploitation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516 (in Chinese)
|
[3] |
袁士义, 王强, 李军诗等. 注气提高采收率技术进展及前景展望. 石油学报, 2020, 41(12): 1623-1632 (Yuan Shiyi, Wang Qiang, Li Junshi, et al. Technology progress and prospects of enhanced oil recovery by gas injection. Acta Petrolei Sincia, 2020, 41(12): 1623-1632 (in Chinese) doi: 10.7623/syxb202012014
|
[4] |
高云丛, 赵密福, 王建波等. 特低渗油藏CO2非混相驱生产特征与气窜规律. 石油勘探与开发, 2014, 41(1): 79-85 (Gao Yuncong, Zhao Mifu, Wang Jianbo, et al. Performance and gas breakthrough during CO2 immiscible flooding in ultra-low permeability reservoirs. Petroleum Exploration and Development, 2014, 41(1): 79-85 (in Chinese)
|
[5] |
Kong D, Gao Y, Sarma H, et al. Experimental investigation of immiscible water-alternating-gas injection in ultra-high water-cut stage reservoir. Advances in Geo-Energy Research, 2021, 5(2): 139-152 doi: 10.46690/ager.2021.02.04
|
[6] |
Roof JG. Snap-off of oil droplets in water-wet pores. Society of Petroleum Engineers Journal, 1970, 10(1): 85-90 doi: 10.2118/2504-PA
|
[7] |
Gauglitz PA, StLaurent CM, Radke CJ. Experimental determination of gas-bubble breakup in a constricted cylindrical capillary. Industrial & Engineering Chemistry Research, 1988, 27(7): 1282-1291
|
[8] |
Ransohoff TC, Gauglitz PA, Radke CJ. Snap-off of gas bubbles in smoothly constricted noncircular capillaries. AIChE Journal, 1987, 33(5): 753-765 doi: 10.1002/aic.690330508
|
[9] |
Tsai TM, Miksis MJ. Dynamics of a drop in a constricted capillary tube. Journal of Fluid Mechanics, 2016, 274(274): 197-217
|
[10] |
Deng W, Cardenas MB, Bennett PC. Extended Roof snap-off for a continuous nonwetting fluid and an example case for supercritical CO2. Advances in Water Resources, 2014, 64: 34-46 doi: 10.1016/j.advwatres.2013.12.001
|
[11] |
Deng W, Balhoff M, Cardenas MB. Influence of dynamic factors on nonwetting fluid snap-off in pores. Water Resources Research, 2015, 51(11): 9182-9189 doi: 10.1002/2015WR017261
|
[12] |
Tian J, Kang YL, Xi ZY, et al. Real-time visualization and investigation of dynamic gas snap-off mechanisms in 2-D micro channels. Fuel, 2020, 279: 118232 doi: 10.1016/j.fuel.2020.118232
|
[13] |
Cha LM, Xie CY, Feng QH, et al. Geometric criteria for the snap-off of a non-wetting droplet in pore-throat channels with rectangular cross-sections. Water Resources Research, 2021, 57(7): e2020WR029476
|
[14] |
Tetteh JT, Cudjoe SE, Aryana SA, et al. Investigation into fluid-fluid interaction phenomena during low salinity waterflooding using a reservoir-on-a-chip microfluidic model. Journal of Petroleum Science and Engineering, 2021, 196: 108074 doi: 10.1016/j.petrol.2020.108074
|
[15] |
Wu YN, Fang SS, Dai CL, et al. Investigation on bubble snap-off in 3-D pore-throat micro-structures. Journal of Industrial and Engineering Chemistry, 2017, 54: 69-74 doi: 10.1016/j.jiec.2017.05.019
|
[16] |
Xiong QR, Baychev TG, Jivkov AP. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. Journal of Contaminant Hydrology, 2016, 192: 101-117 doi: 10.1016/j.jconhyd.2016.07.002
|
[17] |
Monaghan JJ. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, 1992, 30(1): 543-574 doi: 10.1146/annurev.aa.30.090192.002551
|
[18] |
Armstrong RT, Berg S, Dinariev O, et al. Modeling of pore-scale two-phase phenomena using density functional hydrodynamics. Transport in Porous Media, 2016, 112(3): 577-607 doi: 10.1007/s11242-016-0660-8
|
[19] |
Raeini AQ, Blunt MJ, Bijeljic B. Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. Journal of Computational Physics, 2012, 231(17): 5653-5668 doi: 10.1016/j.jcp.2012.04.011
|
[20] |
Chen SY, Doolen GD. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998, 30(1): 329-364 doi: 10.1146/annurev.fluid.30.1.329
|
[21] |
Raeini AQ, Bijeljic B, Blunt MJ. Numerical modelling of sub-pore scale events in two-phase flow through porous media. Transport in Porous Media, 2014, 101(2): 191-213 doi: 10.1007/s11242-013-0239-6
|
[22] |
Starnoni M, Pokrajac D. Numerical study of the effects of contact angle and viscosity ratio on the dynamics of snap-off through porous media. Advances in Water Resources, 2018, 111: 70-85 doi: 10.1016/j.advwatres.2017.10.030
|
[23] |
Zhang CW, Yuan ZY, Matsushita S, et al. Interpreting dynamics of snap-off in a constricted capillary from the energy dissipation principle. Physics of Fluids, 2021, 33(3): 032112 doi: 10.1063/5.0044756
|
[24] |
张嫚嫚, 孙姣, 陈文义. 一种基于几何重构的Youngs-VOF耦合水平集追踪方法. 力学学报, 2019, 51(3): 775-786 (Zhang Manman, Sun Jiao, Chen Wenyi. An interface tracking method of coupled Youngs-VOF and level set based on geometric reconstruction. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 775-786 (in Chinese)
|
[25] |
李庆, 余悦, 唐诗. 多相格子Boltzmann方法及其在相变传热中的应用. 科学通报, 2020, 65(17): 1677-1693 (Li Qing, Yu Yue, Tang Shi. Multiphase lattice Boltzmann method and its applications in phase-change heat transfer. Chinese Science Bulletin, 2020, 65(17): 1677-1693 (in Chinese) doi: 10.1360/TB-2019-0769
|
[26] |
臧晨强, 娄钦. 复杂微通道内非混相驱替过程的格子 Boltzmann方法. 物理学报, 2017, 66(13): 154-162 (Zang Chenqiang, Lou Qin. Lattice Boltzmann simulation of immiscible displacement in the complex micro-channel. Acta Physica Sinica, 2017, 66(13): 154-162 (in Chinese)
|
[27] |
Rothman DH, Keller JM. Immiscible cellular-automaton fluids. Journal of Statistical Physics, 1988, 52(3): 1119-1127
|
[28] |
Shan XW, Chen HD. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993, 47(3): 1815 doi: 10.1103/PhysRevE.47.1815
|
[29] |
Swift MR, Osborn WR, Yeomans JM. Lattice Boltzmann simulation of nonideal fluids. Physical Review Letters, 1995, 75(5): 830 doi: 10.1103/PhysRevLett.75.830
|
[30] |
He XY, Shan XW, Doolen GD. Discrete Boltzmann equation model for nonideal gases. Physical Review E, 1998, 57(1): R13 doi: 10.1103/PhysRevE.57.R13
|
[31] |
张磊, 康立新, 景文龙等. 基于孔隙-喉道双通道模型的油液两相流动形态分析. 中国石油大学学报(自然科学版), 2020, 44(5): 89-93 (Zhang Lei, Kang Lixin, Jing Wenlong, et al. Flow behavior analysis of oil-water two-phase flow in pore throat doublet model. Journal of China University of Petroleum (Edition of Natural Science)
|
[32] |
赵玉龙, 刘香禺, 张烈辉等. 致密砂岩气藏气液流动规律及储层干化作用机理. 天然气工业, 2020, 40(9): 70-79 (Zhao Yulong, Liu Xiangyu, Zhang Liehui, et al. Laws of gas and water flow and mechanism of reservoir drying in tight sandstone gas reservoirs. Natural Gas Industry B, 2020, 40(9): 70-79 (in Chinese)
|
[33] |
Alpak FO, Zacharoudiou I, Berg S, et al. Direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice Boltzmann method on general-purpose graphics processing units. Computational Geosciences, 2019, 23(5): 849-880 doi: 10.1007/s10596-019-9818-0
|
[34] |
Wei B, Hou J, Sukop MC, et al. Flow behaviors of emulsions in constricted capillaries: a Lattice Boltzmann simulation study. Chemical Engineering Science, 2020, 227: 115925 doi: 10.1016/j.ces.2020.115925
|
[35] |
Zhang T, Javadpour F, Li J, et al. Pore-scale perspective of gas/water two-phase flow in shale. SPE Journal, 2021, 26(2): 828-846 doi: 10.2118/205019-PA
|
[36] |
Bhatnagar PL, Gross EP, Krook MA model for collision processes in gases. I Small amplitude processes in charged and neutral one-component systems. Physical Review, 1954, 94(3): 511
|
[37] |
Qian YH, d'Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters)
|
[38] |
Gong S, Cheng P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Computers & Fluids, 2012, 53: 93-104
|
[39] |
Chen L, Kang QJ, Mu YT, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. International Journal of Heat and Mass Transfer, 2014, 76: 210-236 doi: 10.1016/j.ijheatmasstransfer.2014.04.032
|
[40] |
Mukherjee A, Basu DN, Mondal PK. Algorithmic augmentation in the pseudopotential-based lattice Boltzmann method for simulating the pool boiling phenomenon with high-density ratio. Physical Review E, 2021, 103(5): 053302 doi: 10.1103/PhysRevE.103.053302
|
[41] |
Huang HB, Li ZT, Liu SS, et al. Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media. International Journal for Numerical Methods in Fluids, 2009, 61(3): 341-354 doi: 10.1002/fld.1972
|
[42] |
Yuan P, Schaefer L. Equations of state in a lattice Boltzmann model. Physics of Fluids, 2006, 18(4): 042101 doi: 10.1063/1.2187070
|
[43] |
Huang HB, Sukop M, Lu XY. Multiphase Lattice Boltzmann Methods: Theory and Application. John Wiley & Sons, 2015
|
[44] |
Kupershtokh AL, Medvedev DA, Karpov DI. On equations of state in a lattice Boltzmann method. Computers & Mathematics with Applications, 2009, 58(5): 965-974
|
[45] |
何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用. 北京: 科学出版, 2009
He Yaling, Wang Yong, Li Qing. Theory and Application of Lattice Boltzmann Method. Beijing: Science Press, 2009 (in Chinese))
|
[46] |
Krüger T, Kusumaatmaja H, Kuzmin A, et al. The lattice Boltzmann method. Springer International Publishing, 2017, 10: 4-15
|
[47] |
Huang JW, Yin XL, Barrufet M, et al. Lattice Boltzmann simulation of phase equilibrium of methane in nanopores under effects of adsorption. Chemical Engineering Journal, 2021, 419: 129625 doi: 10.1016/j.cej.2021.129625
|
[48] |
Huang HB, Krafczyk M, Lu XY. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2011, 84(2): 046710
|
[49] |
史冬岩, 王志凯, 张阿漫. 一种模拟气液两相流的格子波尔兹曼改进模型. 力学学报, 2014, 46(2): 224-233 (Shi Dongyan, Wang Zhikai, Zhang Aman. A novel lattice boltzmann model simulating gas-liquid two-phase flow. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 224-233 (in Chinese)
|
[50] |
胡五龙, 刘国峰, 晏石林等. 土壤水分布的孔隙尺度格子玻尔兹曼模拟研究. 力学学报, 2021, 53(2): 568-579 (Hu Wulong, Liu Guofeng, Yan Shilin, et al. Pore-scale lattice Boltzmann modeling of soil water Distribution. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 568-579 (in Chinese)
|
[51] |
Li Q, Luo KH, Kang QJ, et al. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Physical Review E, 2014, 90(5): 053301 doi: 10.1103/PhysRevE.90.053301
|
[52] |
Kovscek AR, Radke CJ. Gas bubble snap-off under pressure-driven flow in constricted noncircular capillaries. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1996, 117(1-2): 55-76
|
[53] |
Li J, Li XF, Wang XZ, et al. Water distribution characteristic and effect on methane adsorption capacity in shale clay. International Journal of Coal Geology, 2016, 159: 135-154 doi: 10.1016/j.coal.2016.03.012
|
[54] |
Li J, Li XF, Wu KL, et al. Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay. International Journal of Coal Geology, 2017, 179: 253-268 doi: 10.1016/j.coal.2017.06.008
|
[55] |
Li J, Li XF, Wu KL, et al. Water sorption and distribution characteristics in clay and shale: effect of surface force. Energy & Fuels, 2016, 30(11): 8863-8874
|
[56] |
李靖, 李相方, 王香增等. 页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影响. 力学学报, 2016, 48(5): 1217-1228 (Li Jing, Li Xiangfang, Wang Xiangzeng, et al. Effect of water distribution on methane adsorption capacity in shale clay. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1217-1228 (in Chinese)
|
[57] |
李靖, 李相方, 李莹莹等. 储层含水条件下致密砂岩/页岩无机质纳米孔隙气相渗透率模型. 力学学报, 2015, 47(6): 932-944 (Li Jing, Li Xiangfang, Li Yingying, et al. Model for gas transport in nanopores of shale and tight formation under reservoir condition. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 932-944 (in Chinese)
|
[58] |
Li J, Chen ZX, Wu KL, et al. Effect of water saturation on gas slippage in circular and angular pores. AIChE Journal, 2018, 64(9): 3529-3541 doi: 10.1002/aic.16196
|
[59] |
宋付权, 胡箫, 朱根民等. 纳米阵列中气体驱替液体的流动特征. 力学学报, 2018, 50(3): 553-560 (Song Fuquan, Hu Xiao, Zhu Genmin, et al. The characteristics of water flow displaced by gas in nano arrays. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 553-560 (in Chinese)
|
[60] |
Wei B, Wang YY, Wen YB, et al. Bubble breakup dynamics and flow behaviors of a surface-functionalized nanocellulose based nanofluid stabilized foam in constricted microfluidic devices. Journal of Industrial and Engineering Chemistry, 2018, 68: 24-32 doi: 10.1016/j.jiec.2018.07.025
|
[61] |
Si T. Dynamic behavior of droplet formation in dripping mode of capillary flow focusing. Capillarity, 2021, 4(3): 45-49 doi: 10.46690/capi.2021.03.01
|
[62] |
Liu HH, Zhang YH. Droplet formation in microfluidic cross-junctions. Physics of Fluids, 2011, 23(8): 082101 doi: 10.1063/1.3615643
|