Citation: | Wang Yinkai, Zhang Xingquan, Zuo Lisheng, Zhang Peng, Zhang Yan, Fang Jinxiu. Numerical simulation on response of sheet metal subjected to laser shock with finite difference method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1063-1074. DOI: 10.6052/0459-1879-21-548 |
[1] |
李永池. 波动力学. 合肥: 中国科学技术大学出版社, 2015
Li Yongchi. Wave Dynamics. Hefei: University of Science and Technology of China, 2015(in Chinese)
|
[2] |
李永池, 董杰, 胡秀章等. 内聚爆炸载荷下热塑性中厚球壳的变形和层裂. 爆炸与冲击, 2005, 25(4): 319-324 (Li Yongchi, Dong Jie, Hu Xiu, et al. Deformation and lamination of thermoplastic medium thickness spherical shells under cohesive explosion loading. Explosion and Shock Waves, 2005, 25(4): 319-324 (in Chinese) doi: 10.3321/j.issn:1001-1455.2005.04.006
|
[3] |
席丰, 杨嘉陵. 受冲击作用弹塑性圆板动力响应的弹性效应. 力学学报, 2002, 34(4): 569-577 (Xi Feng, Yang Jialing. Elastic effect of dynamic response of elastic-plastic circular plate under impact. Chinese Journal of Theoretical and Applied Mechanics, 2002, 34(4): 569-577 (in Chinese) doi: 10.3321/j.issn:0459-1879.2002.04.011
|
[4] |
席丰, 杨嘉陵. 强脉冲载荷作用下弹-塑性薄圆板的大挠度动力响应. 爆炸与冲击, 2000, 20(4): 379-384 (Xi Feng, Yang Jialing. Large deflection dynamic response of elastic-plastic thin circular plate under strong impulse load. Explosion and Shock Waves, 2000, 20(4): 379-384 (in Chinese) doi: 10.3321/j.issn:1001-1455.2000.04.016
|
[5] |
Chen WD, Yu YC. An unstructured finite volume method for impact dynamics of a thin plate. Journal of Marine Science and Application, 2012, 11(4): 478-485 doi: 10.1007/s11804-012-1158-6
|
[6] |
陈卫东, 陈浩, 于艳春. 爆炸载荷作用下弹性结构动力可靠性研究. 振动与冲击, 2012, 31(22): 118-122 (Chen Weidong, Chen Hao, Yu Yanchun. Dynamical relability of an elastic structure subjected to explosion. Journal of Vibration and Shock, 2012, 31(22): 118-122 (in Chinese) doi: 10.3969/j.issn.1000-3835.2012.22.023
|
[7] |
李则霖, 李晖, 王东升等. 低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型. 力学学报, 2020, 52(6): 1690-1699 (Li Zelin, Li Hui, Wang Dongsheng, et al. A dynamic response prediction model of fiber-metal hybrid laminated plates embedded with viscoelastic damping core under low-velocity impact excitation. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1690-1699 (in Chinese) doi: 10.6052/0459-1879-20-165
|
[8] |
Zhou M, Zhang YK, Cai L. Laser shock forming on coated metal sheets characterized by ultrahigh-strain-rate plastic deformation. Journal of Applied Physics, 2002, 91(8): 5501-5503
|
[9] |
Liu HX, Shen ZB, Wang X. Micromould based laser shock embossing of thin metal sheets for MEMS applications. Applied Surface Science, 2010, 256(14): 4687-4691 doi: 10.1016/j.apsusc.2010.02.073
|
[10] |
Sun K, Liu HX, Ma YJ, et al. Laser shock hydraulic forming for micro-bowl with miniature concave. The International Journal of Advanced Manufacturing Technology, 2019, 105(1-4): 441-455 doi: 10.1007/s00170-019-04239-3
|
[11] |
He YC, Gong JX, Liu HX, et al. Investigation on formability improvement in laser shock hydroforming. International Journal of Material Forming, 2021, 14(5): 855-869 doi: 10.1007/s12289-020-01599-0
|
[12] |
Wang C, Wu HL, Wang XG, et al. Numerical study of microscale laser bulging based on crystal plasticity. International Journal of Mechanical Sciences, 2020, 177: 105553 doi: 10.1016/j.ijmecsci.2020.105553
|
[13] |
Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behavior. Materials Science and Engineering A, 1996, 210(1): 102-113
|
[14] |
Yan HP, Qin ZY, Zhang W, et al. Dynamic analysis of laser shock response: Experimental and numerical studies. Aerospace Science and Technology, 2019, 94(11): 105430
|
[15] |
Zhang XQ, She JP, Li SZ, et al. Simulation on deforming progress and stress evolution during laser shock forming with finite element method. Journal of Materials Processing Technology, 2015, 220: 27-35 doi: 10.1016/j.jmatprotec.2015.01.004
|
[16] |
曹宇鹏, 葛良辰, 冯爱新等. 冲击波传播方式对激光冲击7050铝合金残余应力分布的影响. 表面技术, 2019, 48(6): 195-202, 220 (Cao Yupeng, Ge Liangchen, Feng Aixin, et al. Effect of shock wave propagation mode on residual stress distribution of laser shock 7050 aluminum alloy. Surface Technology, 2019, 48(6): 195-202, 220 (in Chinese)
|
[17] |
葛良辰, 花国然, 曹宇鹏等. 激光冲击参数对7050铝合金残余应力场的影响. 金属热处理, 2020, 45(9): 81-86 (Ge Liangchen, Hua Guoran, Cao Yupeng, et al. Effect of laser shocking parameters on residual stress field of 7050 aluminum alloy. Heat Treatment of Metals, 2020, 45(9): 81-86 (in Chinese)
|
[18] |
曹宇鹏, 周东呈, 冯爱新等. 激光冲击7050铝合金薄板试样形成残余应力洞的机制. 中国激光, 2016, 43(11): 84-93 (Cao Yupeng, Zhou Dongcheng, Feng Aixin, et al. Formation mechanism of residual stress hole on 7050 aluminum alloy sheet sample under laser shock. Chinese Journal of Lasers, 2016, 43(11): 84-93 (in Chinese)
|
[19] |
任爱国, 张永康, 姜银方等. 激光冲击半模成形板料运动速度的数值模拟. 中国激光, 2010, 37(5): 1368-1374 (Ren Aiguo, Zhang Yongkang, Jiang Yinfang, et al. Numerical simulation of metal sheet velocity by laser shock forming with semi-die. Chinese Journal of Lasers, 2010, 37(5): 1368-1374 (in Chinese) doi: 10.3788/CJL20103705.1368
|
[20] |
Zhang XQ, Zhang Y, Yin YD, et al. Simulation of the forming process of conical cup shaped by laser-induced shock waves. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8): 1619-1630 doi: 10.1007/s00170-016-9633-x
|
[21] |
Jones N. Structural Impact. Cambridge: Cambridge University Press, 1989
|
[22] |
纪看看, 张兴权, 邓磊等. 强激光驱动316 L不锈钢靶板变形速度数值模拟. 中国激光, 2016, 43(11): 104-111 (Ji Kankan, Zhang Xingquan, Deng Lei, et al. Numerical simulation on deformation velocity of 316 L stainless steel target driven by intense lasers. Chinese Journal of Lasers, 2016, 43(11): 104-111 (in Chinese)
|
[23] |
Lee S, Barthelat F, Hutchinson JW. Dynamic failure of metallic pyramidal truss core materials - Experiments and modeling. International Journal of Plasticity, 2007, 22(11): 2118-2145
|
[24] |
Zhang WW, Yao YL, Noyan IC. Microscale laser shock peening of thin films. Part 1: Experiment, modeling and simulation. Journal of Manufacturing Science and Engineering, 2004, 126(1): 10-17
|
[25] |
席丰, 张云. 脉冲载荷作用下钢梁动力响应及反常行为的应变率效应. 爆炸与冲击, 2012, 32(1): 34-42 (Xi Feng, Zhang Yun. The effects of strain rate on the dynamic response and abnormal behavior of steel beams under pulse loading. Explosion and Shock Waves, 2012, 32(1): 34-42 (in Chinese) doi: 10.3969/j.issn.1001-1455.2012.01.006
|
[26] |
Li X, He WF, Luo SH, et al. Simulation and experimental study on residual stress distribution in titanium alloy treated by laser shock peening with flat-top and gaussian laser beams. Materials, 2019, 12(8): 1343 doi: 10.3390/ma12081343
|
[27] |
张建, 花银群, 曹将栋. 激光冲击铜薄膜的应力波传播特性模拟分析. 激光技术, 2016, 40(4): 601-605 (Zhang Jian, Hua Yinqun, Cao Jiangdong. Simulation of propagation characteristics of stress wave in copper films with laser. Laser Technology, 2016, 40(4): 601-605 (in Chinese) doi: 10.7510/jgjs.issn.1001-3806.2016.04.030
|
[28] |
Peyre P, Berthe L, Scherpereel X, et al. Laser-shock processing of aluminium-coated 55 C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour. Journal of Materials Science, 1998, 33(6): 1421-1429 doi: 10.1023/A:1004331205389
|
[29] |
Zhang XQ, Zhang Y, Zhang YW, et al. Numerical and experimental investigations of laser shock forming aluminum alloy sheet with mold. International Journal of Material Forming, 2018, 11(1): 101-112 doi: 10.1007/s12289-016-1333-4
|
[30] |
Li X, Lie WF, Nie XF, et al. Regularity of residual stress distribution in titanium alloys induced by laser shock peening with different energy spatial distributions. Laser and Optoelectronics Progress, 2018, 55(6): 1006-4125
|
[31] |
刘子昂, 石伟, 汪诚. 激光冲击强化残余应力的数值模拟研究. 激光技术, 2017, 41(1): 1-5 (Liu Ziang, Shi Wei, Wang Cheng. Study on numerical simulation of residual stress induced by shock processing. Laser Technology, 2017, 41(1): 1-5 (in Chinese) doi: 10.7510/jgjs.issn.1001-3806.2017.01.001
|
[32] |
杨玉英. 实用冲压工艺及模具设计手册. 北京: 机械工业出版社, 2015
Yang Yuying. Practical Stamping Process and Die Design Manual. Beijing: Machinery Industry Press, 2015 (in Chinese))
|