EI、Scopus 收录
中文核心期刊
Volume 54 Issue 5
May  2022
Turn off MathJax
Article Contents
Hao Huiyun, Liu Yunqing, Wei Haipeng, Zhang Mengjie, Huang Biao. Vortex dynamics of a pitching hydrofoil based on the vorticity moment theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1199-1208 doi: 10.6052/0459-1879-21-543
Citation: Hao Huiyun, Liu Yunqing, Wei Haipeng, Zhang Mengjie, Huang Biao. Vortex dynamics of a pitching hydrofoil based on the vorticity moment theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1199-1208 doi: 10.6052/0459-1879-21-543

VORTEX DYNAMICS OF A PITCHING HYDROFOIL BASED ON THE VORTICITY MOMENT THEORY

doi: 10.6052/0459-1879-21-543
  • Received Date: 2021-10-22
  • Accepted Date: 2022-03-24
  • Available Online: 2022-03-25
  • Publish Date: 2022-05-01
  • In this paper, the unsteady vortical structures and corresponding hydrodynamic characteristics of the pitching NACA66 hydrofoil are numerically simulated with the standard k-ω SST turbulence model and dynamic mesh technology. And the influence of local vortical structures on the transient lift is quantitatively obtained based on the finite-domain vorticity moment theory. The results show that during the upstroke stage, transition of laminar flow to turbulence moves from the trailing edge to the leading edge of the hydrofoil at small angle of attack. At relatively higher angle of attack, a clockwise trailing edge vortex ( defined as −TEV)appears on the suction surface firstly. It gradually increases in size and develops towards the leading edge to be fused with the clockwise leading edge vortex (defined as −LEV) there. Then the new developed −LEV interacts with the counterclockwise trailing edge vortex (defined as +TEV) until it falls off completely, which directly leads to the dynamic stall of the hydrofoil. Meanwhile, quantitative analysis based on the finite-domain vorticity moment theory shows that the attached −LEV and −TEV in the finite domain provide positive lift, while +TEV provides negative lift. At the moment when −LEV covers almost the whole suction surface, it contributes the most to the transient total lift which accounts for about 50%. It is also found that different parts of a vortex provide positive or negative lift. As for shedding vortices escaping from the finite domain, all regions of a vortex provide only consistent contribution instead, which means that a clockwise vortex provides positive lift, while a counterclockwise vortex provides negative lift. During the fluctuating stall stage, the overall contribution from the vortices out of the finite domain is quite little and has slight fluctuation, which reflects the unsteady characteristics of the vortical flow caused by the shedding and convection of large-scale vortices

     

  • loading
  • [1]
    徐建安, 孔德慧, 高新. 2自由度振荡水翼推进性能分析及实验研究. 机器人, 2017, 39(3): 333-339 (Xu Jian’an, Kong Dehui, Gao Xin. Performance analysis and experimental study on 2-degree-of-freedom oscillating hydrofoil propulsion. Robot, 2017, 39(3): 333-339 (in Chinese)
    [2]
    Li DY, Wang HJ, Qin YL, et al. Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode. Renewable Energy, 2018, 126: 668-680 doi: 10.1016/j.renene.2018.03.080
    [3]
    Park S, Park S, Rhee SH. Influence of blade deformation and yawed inflow on performance of a horizontal axis tidal stream turbine. Renewable Energy, 2016, 92: 321-332 doi: 10.1016/j.renene.2016.02.025
    [4]
    乔凯, 王启先, 王勇等. 振荡翼改进运动模型的能量捕获性能分析. 山东大学学报(工学版), 2020, 50(6): 40-47 (Qiao Kai, Wang Qixian, Wang Yong, et al. Energy harvesting performance analysis on improved motion model of oscillating hydrofoil. Journal of Shandong University (Engineering Science), 2020, 50(6): 40-47 (in Chinese)
    [5]
    张世军. 振荡翼式潮流能发电装置的水动力分析. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2019

    Zhang Shijun. Hydrodynamic analysis of the oscillating hydrofoil in tidal energy extraction devices. [Master's Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)
    [6]
    谈松林. 翼形对振荡翼水轮机潮流能获取性能影响数值分析及实验验证. [硕士论文]. 哈尔滨: 哈尔滨工程大学, 2018

    Tan Songlin. Numerical and experimental analysis of hydrofoils shape effects on tidal current energy extracting performance for an oscillating-foil hydroturbine. [Master's Thesis]. Harbin: Harbin Engineering University, 2018 (in Chinese)
    [7]
    曹树良, 吴玉林, 杨辅政. 混流式水轮机转轮内部三维紊流的数值分析. 水力发电学报, 1997, 4: 53-61 (Cao Shuliang, Wu Yulin, Yang Fuzheng. Numerical simulation of three-dimensional turbulent flow through a Francis turbine runner. Journal of Hydroelectric Engineering, 1997, 4: 53-61 (in Chinese)
    [8]
    Zhang MJ, Chen H, Wu Q, et al. Experimental and numerical investigation of cavitating vortical patterns around a Tulin hydrofoil. Ocean Engineering, 2019, 173: 298-307 doi: 10.1016/j.oceaneng.2018.12.064
    [9]
    Chitrakar S, Solemslie BW, Neopane HP, et al. Review on numerical techniques applied in impulse hydro turbines. Renewable Energy, 2020, 159: 843-859 doi: 10.1016/j.renene.2020.06.058
    [10]
    Acharya M, Metwally MH. Unsteady pressure field and vorticity production over a pitching airfoil. AIAA Journal, 1992, 30(2): 403-411 doi: 10.2514/3.10931
    [11]
    Ellington CP, vanden Berg C, Willmott AP, et al. Leading-edge vortices in insect flight. Nature, 1996, 384(6610): 626-630 doi: 10.1038/384626a0
    [12]
    Kissing J, Kriegseis J, Li ZY, et al. Insights into leading edge vortex formation and detachment on a pitching and plunging flat plate. Experiments in Fluids, 2020, 61(9): 208 doi: 10.1007/s00348-020-03034-1
    [13]
    Tseng CC, Hu HA. Flow dynamics of a pitching foil by Eulerian and Lagrangian viewpoints. AIAA Journal, 2016, 54(2): 712-727 doi: 10.2514/1.J053619
    [14]
    Eljack EM, Soria J. Investigation of the low-frequency oscillations in the flowfield about an airfoil. AIAA Journal, 2020, 58(10): 4271-4286 doi: 10.2514/1.J058905
    [15]
    黄彪. 非定常空化流动机理及数值计算模型研究. [博士论文]. 北京: 北京理工大学, 2012

    Huang Biao. Physical and numerical investigation of unsteady cavitating flows. [PhD Thesis]. Beijing: Beijing Institute of Technology, 2018 (in Chinese)
    [16]
    Zhang MJ, Huang B, Qian ZD, et al. Cavitating flow structures and corresponding hydrodynamics of a transient pitching hydrofoil in different cavitation regimes. International Journal of Multiphase Flow, 2020, 132: 103408 doi: 10.1016/j.ijmultiphaseflow.2020.103408
    [17]
    Alam M, Muhammad Z. Dynamics of flow around a pitching hydrofoil. Journal of Fluids and Structures, 2020, 99: 103151 doi: 10.1016/j.jfluidstructs.2020.103151
    [18]
    Xia X, Mohseni K. Lift evaluation of a two-dimensional pitching flat plate. Physics of Fluids, 2013, 25(9): 091901 doi: 10.1063/1.4819878
    [19]
    Tang Y, Wang FJ, Wang CY, et al. Low-frequency oscillation characteristics of flow for NACA66 hydrofoil under critical stall condition. Renewable Energy, 2021, 172: 983-997 doi: 10.1016/j.renene.2021.03.095
    [20]
    Liu LQ, Zhu JY, Wu JZ. Lift and drag in two-dimensional steady viscous and compressible flow. Journal of Fluid Mechanics, 2015, 784: 304-341 doi: 10.1017/jfm.2015.584
    [21]
    Goldstein S. The forces on a solid body moving through viscous fluid. Proceedings of the Royal Society of London Series A-Containing Papers of a Mathematical and Physical Character, 1929, 123(791): 216-225
    [22]
    Liu LQ, Wu JZ, Su WD, et al. Lift and drag in three-dimensional steady viscous and compressible flow. Physics of Fluids, 2017, 29(11): 116105 doi: 10.1063/1.4989747
    [23]
    von Karman T, Burgers JM. General Aerodynamic Theory——Perfect Fluids, Volume II. Berlin: Springer, 1936
    [24]
    Wu JZ, Lu XY, Zhuang LX. Integral force acting on a body due to local flow structures. Journal of Fluid Mechanics, 2007, 576: 265-286 doi: 10.1017/S0022112006004551
    [25]
    童秉纲, 尹协远, 朱克勤. 涡运动理论. 合肥: 中国科学技术大学出版社, 2009

    Tong Binggang, Yin Xieyuan, Zhu Keqin. Theory of Vortex Dynamics. Hefei: Press of University of Science and Technology of China, 2009 (in Chinese)
    [26]
    Ericsson LE, Reding JP. Unsteady airfoil stall, review and extension. Journal of Aircraft, 1971, 8(8): 609-616 doi: 10.2514/3.59146
    [27]
    Wu JZ, Wu JM. Vorticity Dynamics on Boundaries. Advances in Applied Mechanics, 1996, 32: 119-275
    [28]
    Yang Y. Theory and applications of the vortex-surface field. Chinese Science Bulletin, 2020, 65(6): 483-495 doi: 10.1360/TB-2019-0596
    [29]
    孙茂. 昆虫飞行的高升力机理. 力学进展, 2002, 32(3): 425-434 (Sun Mao. Unsteady lift mechanisms in insect flight. Advances in Mechanics, 2002, 32(3): 425-434 (in Chinese) doi: 10.3321/j.issn:1000-0992.2002.03.009
    [30]
    Marongiu C, Tognaccini R. Far-field analysis of the aerodynamic force by Lamb vector integrals. AIAA Journal, 2010, 48(11): 2543-2555 doi: 10.2514/1.J050326
    [31]
    Ducoin A. Etude experimentale et numerique du chargement hydrodynamique des corps portants en regime transitoire avec prise en compte du couplage fluide structure. [PhD Thesis]. Institut de Recherche de l’Ecole Navale, Lanvéoc Poulmic, Ecole Centrale de Nantes, France, 2008 (in French)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article Metrics

    Article views (533) PDF downloads(148) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return