Citation: | Hao Huiyun, Liu Yunqing, Wei Haipeng, Zhang Mengjie, Huang Biao. Vortex dynamics of a pitching hydrofoil based on the vorticity moment theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1199-1208 doi: 10.6052/0459-1879-21-543 |
[1] |
徐建安, 孔德慧, 高新. 2自由度振荡水翼推进性能分析及实验研究. 机器人, 2017, 39(3): 333-339 (Xu Jian’an, Kong Dehui, Gao Xin. Performance analysis and experimental study on 2-degree-of-freedom oscillating hydrofoil propulsion. Robot, 2017, 39(3): 333-339 (in Chinese)
|
[2] |
Li DY, Wang HJ, Qin YL, et al. Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode. Renewable Energy, 2018, 126: 668-680 doi: 10.1016/j.renene.2018.03.080
|
[3] |
Park S, Park S, Rhee SH. Influence of blade deformation and yawed inflow on performance of a horizontal axis tidal stream turbine. Renewable Energy, 2016, 92: 321-332 doi: 10.1016/j.renene.2016.02.025
|
[4] |
乔凯, 王启先, 王勇等. 振荡翼改进运动模型的能量捕获性能分析. 山东大学学报(工学版), 2020, 50(6): 40-47 (Qiao Kai, Wang Qixian, Wang Yong, et al. Energy harvesting performance analysis on improved motion model of oscillating hydrofoil. Journal of Shandong University (Engineering Science)
|
[5] |
张世军. 振荡翼式潮流能发电装置的水动力分析. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2019
Zhang Shijun. Hydrodynamic analysis of the oscillating hydrofoil in tidal energy extraction devices. [Master's Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)
|
[6] |
谈松林. 翼形对振荡翼水轮机潮流能获取性能影响数值分析及实验验证. [硕士论文]. 哈尔滨: 哈尔滨工程大学, 2018
Tan Songlin. Numerical and experimental analysis of hydrofoils shape effects on tidal current energy extracting performance for an oscillating-foil hydroturbine. [Master's Thesis]. Harbin: Harbin Engineering University, 2018 (in Chinese)
|
[7] |
曹树良, 吴玉林, 杨辅政. 混流式水轮机转轮内部三维紊流的数值分析. 水力发电学报, 1997, 4: 53-61 (Cao Shuliang, Wu Yulin, Yang Fuzheng. Numerical simulation of three-dimensional turbulent flow through a Francis turbine runner. Journal of Hydroelectric Engineering, 1997, 4: 53-61 (in Chinese)
|
[8] |
Zhang MJ, Chen H, Wu Q, et al. Experimental and numerical investigation of cavitating vortical patterns around a Tulin hydrofoil. Ocean Engineering, 2019, 173: 298-307 doi: 10.1016/j.oceaneng.2018.12.064
|
[9] |
Chitrakar S, Solemslie BW, Neopane HP, et al. Review on numerical techniques applied in impulse hydro turbines. Renewable Energy, 2020, 159: 843-859 doi: 10.1016/j.renene.2020.06.058
|
[10] |
Acharya M, Metwally MH. Unsteady pressure field and vorticity production over a pitching airfoil. AIAA Journal, 1992, 30(2): 403-411 doi: 10.2514/3.10931
|
[11] |
Ellington CP, vanden Berg C, Willmott AP, et al. Leading-edge vortices in insect flight. Nature, 1996, 384(6610): 626-630 doi: 10.1038/384626a0
|
[12] |
Kissing J, Kriegseis J, Li ZY, et al. Insights into leading edge vortex formation and detachment on a pitching and plunging flat plate. Experiments in Fluids, 2020, 61(9): 208 doi: 10.1007/s00348-020-03034-1
|
[13] |
Tseng CC, Hu HA. Flow dynamics of a pitching foil by Eulerian and Lagrangian viewpoints. AIAA Journal, 2016, 54(2): 712-727 doi: 10.2514/1.J053619
|
[14] |
Eljack EM, Soria J. Investigation of the low-frequency oscillations in the flowfield about an airfoil. AIAA Journal, 2020, 58(10): 4271-4286 doi: 10.2514/1.J058905
|
[15] |
黄彪. 非定常空化流动机理及数值计算模型研究. [博士论文]. 北京: 北京理工大学, 2012
Huang Biao. Physical and numerical investigation of unsteady cavitating flows. [PhD Thesis]. Beijing: Beijing Institute of Technology, 2018 (in Chinese)
|
[16] |
Zhang MJ, Huang B, Qian ZD, et al. Cavitating flow structures and corresponding hydrodynamics of a transient pitching hydrofoil in different cavitation regimes. International Journal of Multiphase Flow, 2020, 132: 103408 doi: 10.1016/j.ijmultiphaseflow.2020.103408
|
[17] |
Alam M, Muhammad Z. Dynamics of flow around a pitching hydrofoil. Journal of Fluids and Structures, 2020, 99: 103151 doi: 10.1016/j.jfluidstructs.2020.103151
|
[18] |
Xia X, Mohseni K. Lift evaluation of a two-dimensional pitching flat plate. Physics of Fluids, 2013, 25(9): 091901 doi: 10.1063/1.4819878
|
[19] |
Tang Y, Wang FJ, Wang CY, et al. Low-frequency oscillation characteristics of flow for NACA66 hydrofoil under critical stall condition. Renewable Energy, 2021, 172: 983-997 doi: 10.1016/j.renene.2021.03.095
|
[20] |
Liu LQ, Zhu JY, Wu JZ. Lift and drag in two-dimensional steady viscous and compressible flow. Journal of Fluid Mechanics, 2015, 784: 304-341 doi: 10.1017/jfm.2015.584
|
[21] |
Goldstein S. The forces on a solid body moving through viscous fluid. Proceedings of the Royal Society of London Series A-Containing Papers of a Mathematical and Physical Character, 1929, 123(791): 216-225
|
[22] |
Liu LQ, Wu JZ, Su WD, et al. Lift and drag in three-dimensional steady viscous and compressible flow. Physics of Fluids, 2017, 29(11): 116105 doi: 10.1063/1.4989747
|
[23] |
von Karman T, Burgers JM. General Aerodynamic Theory——Perfect Fluids, Volume II. Berlin: Springer, 1936
|
[24] |
Wu JZ, Lu XY, Zhuang LX. Integral force acting on a body due to local flow structures. Journal of Fluid Mechanics, 2007, 576: 265-286 doi: 10.1017/S0022112006004551
|
[25] |
童秉纲, 尹协远, 朱克勤. 涡运动理论. 合肥: 中国科学技术大学出版社, 2009
Tong Binggang, Yin Xieyuan, Zhu Keqin. Theory of Vortex Dynamics. Hefei: Press of University of Science and Technology of China, 2009 (in Chinese)
|
[26] |
Ericsson LE, Reding JP. Unsteady airfoil stall, review and extension. Journal of Aircraft, 1971, 8(8): 609-616 doi: 10.2514/3.59146
|
[27] |
Wu JZ, Wu JM. Vorticity Dynamics on Boundaries. Advances in Applied Mechanics, 1996, 32: 119-275
|
[28] |
Yang Y. Theory and applications of the vortex-surface field. Chinese Science Bulletin, 2020, 65(6): 483-495 doi: 10.1360/TB-2019-0596
|
[29] |
孙茂. 昆虫飞行的高升力机理. 力学进展, 2002, 32(3): 425-434 (Sun Mao. Unsteady lift mechanisms in insect flight. Advances in Mechanics, 2002, 32(3): 425-434 (in Chinese) doi: 10.3321/j.issn:1000-0992.2002.03.009
|
[30] |
Marongiu C, Tognaccini R. Far-field analysis of the aerodynamic force by Lamb vector integrals. AIAA Journal, 2010, 48(11): 2543-2555 doi: 10.2514/1.J050326
|
[31] |
Ducoin A. Etude experimentale et numerique du chargement hydrodynamique des corps portants en regime transitoire avec prise en compte du couplage fluide structure. [PhD Thesis]. Institut de Recherche de l’Ecole Navale, Lanvéoc Poulmic, Ecole Centrale de Nantes, France, 2008 (in French)
|