Citation: | Zhao Yaobing, Zheng Panpan, Chen Lincong, Kang Houjun. Study on nonlinear coupled vibrations of damaged suspended cables with symmetry-breaking. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 471-481. DOI: 10.6052/0459-1879-21-542 |
[1] |
胡海岩. 对振动学及其发展的美学思考. 振动工程学报, 2000, 13(2): 161-169 (Hu Haiyan. Aesthetical consideration for vibration theory and its development. Journal of Vibration Engineering, 2000, 13(2): 161-169 (in Chinese) doi: 10.3969/j.issn.1004-4523.2000.02.001
|
[2] |
胡海岩. 振动力学−研究性教程. 北京: 科学出版社
Hu Haiyan. Mechanics of Vibration—Research Course. Beijing: Science Press, 2020 (in Chinese)
|
[3] |
张登博, 唐有绮, 陈立群. 非齐次边界条件下轴向运动梁的非线性振动. 力学学报, 2019, 51(1): 218-227 (Zhang Dengbo, Tang Youqi, Chen Liqun. Nonlinear vibrations of axially moving beams with nonhomogeneous boundary conditions. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 218-227 (in Chinese) doi: 10.6052/0459-1879-18-189
|
[4] |
康厚军, 郭铁丁, 赵跃宇等. 大跨度斜拉桥非线性振动模型与理论研究进展. 力学学报, 2016, 48(3): 519-535 (Kang Houjun, Guo Tieding, Zhao Yueyu, et al. Review on nonlinear vibration and modeling of large span cable-stayed bridge. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 519-535 (in Chinese) doi: 10.6052/0459-1879-15-436
|
[5] |
Triantafyllou MS, Grinfogel L. Natural frequencies and modes of inclined cables. Journal of Structural Engineering, 1986, 112(1): 139-148 doi: 10.1061/(ASCE)0733-9445(1986)112:1(139)
|
[6] |
Cheng SP, Perkins NC. Closed form vibration analysis of sagged cable/mass suspensions. Journal of Applied Mechanics, 1992, 59(4): 923-928 doi: 10.1115/1.2894062
|
[7] |
Lepidi M, Gattulli V, Vestroni F. Static and dynamic response of elastic suspended cables with damage. International Journal of Solids and Structures, 2007, 44: 8194-8212 doi: 10.1016/j.ijsolstr.2007.06.009
|
[8] |
Wu QX, Takahashi K, Nakamura S. Formulae for frequencies and modes of in-plane vibrations of small-sag inclined cables. Journal of Sound and Vibration, 2005, 279(3-5): 1155-1169 doi: 10.1016/j.jsv.2004.01.004
|
[9] |
任伟新, 陈刚. 由基频计算拉索拉力的实用公式. 土木工程学报, 2005, 38(11): 26-31 (Ren Weixin, Chen Gang. Practical formulas to determine cable tension by using cable fundamental frequency. China Civil Engineering Journal, 2005, 38(11): 26-31 (in Chinese) doi: 10.3321/j.issn:1000-131X.2005.11.005
|
[10] |
吴庆雄, 陈宝春. 塔桅结构的斜索面内固有振动计算的修正Irvine方程. 工程力学, 2007, 24(4): 18-23 (Wu Qingxiong, Chen Baochun. Modified Irvine equations for in-plane natural vibrations of inclined cables in tower and guyed mast structures. Engineering Mechanics, 2007, 24(4): 18-23 (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.04.004
|
[11] |
Irvine HM. Cable Structures. Cambridge: MIT Press, 1981
|
[12] |
Srinil N, Rega G, Chucheepsakul S. Large amplitude three-dimensional free vibrations of inclined sagged elastic cables. Nonlinear Dynamics, 2003, 33(2): 129-154 doi: 10.1023/A:1026019222997
|
[13] |
王浩宇, 吴勇军. 1: 1内共振对随机振动系统可靠性的影响. 力学学报, 2015, 47(5): 807-813 (Wang Haoyu, Wu Yongjun. The influence of one-to-one internal resonance on reliability of random vibration system. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 807-813 (in Chinese) doi: 10.6052/0459-1879-15-058
|
[14] |
吕敬, 李俊峰, 王天舒等. 充液挠性航天器俯仰运动1: 1: 1内共振动力学分析. 力学学报, 2007, 39(6): 804-812 (Lü Jing, Li Junfeng, Wang Tianshu, et al. Analytical study on 1: 1: 1 internal resonance nonlinear dynamics of a liquid-filled spacecraft with elastic appendages. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(6): 804-812 (in Chinese) doi: 10.3321/j.issn:0459-1879.2007.06.012
|
[15] |
叶敏, 吕敬, 丁千等. 复合材料层合板1: 1参数共振的分岔研究. 力学学报, 2004, 36(1): 64-71 (Ye Min, Lü Jing, Ding Qian, et al. The bifurcation analysis of the laminated composite plate with 1: 1 parametrically resonance. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1): 64-71 (in Chinese) doi: 10.3321/j.issn:0459-1879.2004.01.010
|
[16] |
姜盼, 郭翔鹰, 张伟. 石墨烯三相复合材料板的非线性动力学研究. 动力学与控制学报, 2019, 17(3): 270-280 (Jiang Pan, Guo Xiangying, Zhang Wei. Nonlinear dynamics of a three-phase composite materials plate with grapheme. Journal of Dynamics and Control, 2019, 17(3): 270-280 (in Chinese) doi: 10.6052/1672-6553-2019-021
|
[17] |
孙莹, 张伟. 1: 1内共振环形桁架天线的稳定性分析. 动力学与控制学报, 2018, 16(3): 281-288 (Sun Ying, Zhang Wei. Analysis on stability of circular mesh antenna with 1: 1 internal resonance. Journal of Dynamics and Control, 2018, 16(3): 281-288 (in Chinese) doi: 10.6052/1672-6553-2018-024
|
[18] |
Srinil N, Rega G. The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables. International Journal of Non-Linear Mechanics, 2007, 42(1): 180-195 doi: 10.1016/j.ijnonlinmec.2006.09.005
|
[19] |
Rega G, Srinil N. Nonlinear hybrid-mode resonant forced oscillations of sagged inclined cables at avoidances. Journal of Computational and Nonlinear Dynamics, 2007, 2(4): 324-336 doi: 10.1115/1.2756064
|
[20] |
Chen Z, Chen H, Liu H, et al. Corrosion behavior of different cables of large-span building structures in different environments. Journal of Materials in Civil Engineering, 2020, 32(11): 04020345 doi: 10.1061/(ASCE)MT.1943-5533.0003428
|
[21] |
Chen A, Yang YY, Ma RJ, et al. Experimental study of corrosion effects on high-strength steel wires considering strain influence. Construction and Building Materials, 2020, 240: 117910 doi: 10.1016/j.conbuildmat.2019.117910
|
[22] |
Wang Y, Zheng YQ, Zhang WH, et al. Analysis on damage evolution and corrosion fatigue performance of high strength steel wire for bridge cable: Experiments and numerical simulation. Theoretical and Applied Fracture Mechanics, 2020, 107: 102571 doi: 10.1016/j.tafmec.2020.102571
|
[23] |
Jiang C, Wu C, Cai CS, et al. Corrosion fatigue analysis of stay cables under combined loads of random traffic and wind. Engineering Structures, 2020, 206: 110153 doi: 10.1016/j.engstruct.2019.110153
|
[24] |
Bouaanani N. Numerical investigation of the modal sensitivity of suspended cables with localized damage. Journal of Sound and Vibration, 2006, 292(3-5): 1015-1030 doi: 10.1016/j.jsv.2005.09.013
|
[25] |
Lepidi M. Damage identification in elastic suspended cables through frequency measurement. Journal of Vibration and Control, 2009, 15(6): 867-896 doi: 10.1177/1077546308096107
|
[26] |
Sun HH, Xu J, Chen WZ, et al. Time-dependent effect of corrosion on the mechanical characteristics of stay cable. Journal of Bridge Engineering, 2018, 23(5): 04018019 doi: 10.1061/(ASCE)BE.1943-5592.0001229
|
[27] |
Xu J, Sun HH, Cai SY. Effect of symmetrical broken wires damage on mechanical characteristics of stay cable. Journal of Sound and Vibration, 2019, 461: 114920 doi: 10.1016/j.jsv.2019.114920
|
[28] |
王立彬, 王达, 吴勇. 损伤拉索的等效弹性模量及其参数分析. 计算力学学报, 2015, 32(3): 339-345 (Wang Libin, Wang Da, Wu Yong. The equivalent elastic modulus of damaged cables and parameter analysis. Chinese Journal of Computational Mechanics, 2015, 32(3): 339-345 (in Chinese) doi: 10.7511/jslx201503007
|
[29] |
兰成明, 李惠, 鞠杨. 平行钢丝拉索承载力评定. 土木工程学报, 2013, 46(5): 31-38 (Lan Chengming, Li Hui, Ju Yang. Bearing capacity assessment for parallel wire cables. China Civil Engineering Journal, 2013, 46(5): 31-38 (in Chinese)
|
[30] |
Zhu J, Ye GR, Xiang YQ, et al. Dynamic behavior of cable-stayed beam with localized damage. Journal of Vibration and Control, 2011, 17(7): 1080-1089 doi: 10.1177/1077546310378028
|
[1] | Mo Shuai, Zeng Yanjun, Wang Zhen, Zhang Wei. NONLINEAR DYNAMIC ANALYSIS OF HIGH SPEED AND HEAVY LOAD HERRINGBONE GEAR TRANSMISSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2381-2392. DOI: 10.6052/0459-1879-23-166 |
[2] | Chen Ling, Tang Youqi. BIFURCATION AND CHAOS OF AXIALLY MOVING BEAMS UNDER TIME-VARYING TENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1180-1188. DOI: 10.6052/0459-1879-19-068 |
[3] | Fang Jianshi, Zhang Dingguo. A HIGH-ORDER RIGID-FLEXIBLE COUPLING MODEL AND FREQUENCY VEERING OF A ROTATING CANTILEVER THIN PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 173-180. DOI: 10.6052/0459-1879-15-194 |
[4] | zhang xiaofang bi qinsheng. Bursting phenomena as well as the bifurcation mechanism in periodically excited hartley model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 765-773. DOI: 10.6052/0459-1879-2010-4-lxxb2009-614 |
[5] | Yourong Li, Lan Peng, Shuangying Wu, Nobuyuki Imaishi. Bifurcation of thermocapillary convection in a shallow annular pool of silicon melt[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 43-48. DOI: 10.6052/0459-1879-2007-1-2005-470 |
[6] | Bifurcation and fractal of the coupled logistic maps[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(3): 346-355. DOI: 10.6052/0459-1879-2005-3-2003-403 |
[7] | THE BIFURCATION ANALYSIS ON THE LAMINATED COMPOSITE PLATE WITH 1:1 PARAMETRICALLY RESONANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1). DOI: 10.6052/0459-1879-2004-1-2003-024 |
[8] | NORMAL FORM OF THE MULTIPLE HOPF BIFURCATIONS IN NONINTERNAL RESONANCE CASES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(6): 669-675. DOI: 10.6052/0459-1879-1997-6-1995-283 |
[9] | CML MODELS FOR SPATIOTEMPORAL CHAOS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(6): 741-744. DOI: 10.6052/0459-1879-1996-6-1995-395 |
[10] | CENTROSYMMETRIC CHAOS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(1): 55-58. DOI: 10.6052/0459-1879-1992-1-1995-711 |