EI、Scopus 收录
中文核心期刊
Li Han, Huang Qiaogao, Pan Guang, Dong Xinguo. Review of hydrodynamics and flow field characteristics of pump-jet propulsors. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 829-843. DOI: 10.6052/0459-1879-21-529
Citation: Li Han, Huang Qiaogao, Pan Guang, Dong Xinguo. Review of hydrodynamics and flow field characteristics of pump-jet propulsors. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 829-843. DOI: 10.6052/0459-1879-21-529

REVIEW OF HYDRODYNAMICS AND FLOW FIELD CHARACTERISTICS OF PUMP-JET PROPULSORS

  • Received Date: October 15, 2021
  • Accepted Date: December 20, 2021
  • Available Online: December 21, 2021
  • A pump-jet propulsor is a multi-component integrated hydrodynamic propulsion device consisting of a guide tube, a rotating cascade (referred to as rotor) in the guide tube, and a stationary cascade (referred to as stator) in the guide tube. Pump-jet propulsor has the features of high critical sailing speed, heavy load, high propulsion efficiency, and low radiated noise. Pump-jet propulsor was first invented abroad in the middle of the last century, and mainly used for torpedo propulsion in the initial stage, and then extended to submarine propulsion. Nowadays, pump-jet propulsor is widely equipped in foreign submarines and high-speed torpedoes. There are great differences in pump-jet propulsor research and practical application at home and abroad. In recent years, pump-jet propulsor propulsion technology has become a research hotspot in the field of underwater equipment due to the technical blockade from abroad, the development needs of submarine equipment, and the extension of pump-jet propulsor application. The components of the pump-jet propulsor have complex flow interactions with each other, and the pump-jet propulsor is highly coupled with the hull. The application and popularization of pump-jet propulsors need a thorough understanding of hydrodynamic and flow field characteristics. This paper introduces the basic composition and characteristics of pump-jet propulsor and summarizes the research advance according to research interest and purpose. From the perspective of hydrodynamic characteristics, the propulsion features, prediction approaches, and hydrodynamic variation laws are summarized. From the perspective of flow field characteristics, the published investigations are categorized and summarized as tip clearance flow field, rotor-stator interference flow field, and wake flow field. This paper analyzes and summarizes the challenges in the research on hydrodynamic and flow field characteristics of pump-jet propulsor and the practical application of pump-jet propulsor. Finally, the prospect of further investigations on pump-jet propulsor is proposed.
  • [1]
    王超, 郭春雨, 常欣. 特种推进器及附加整流装置. 哈尔滨: 哈尔滨工程大学出版社, 2013: 136-137

    Wang Chao, Guo Chunyu, Chang Xin. Special Thrusters and Additional Rectifier Devices. Harbin: Harbin Engineering University Press, 2013: 136-137 (in Chinese)
    [2]
    杨琼方, 王永生. 泵喷推进器的低噪声设计机理与设计应用. 武汉: 华中科技大学出版, 2015: 5-6

    Yang Qiongfang, Wang Yongsheng. Principle and Application of Low Noise Pumpjet Design. Wuhan: Huazhong University of Science and Technology Press, 2015: 5-6 (in Chinese)
    [3]
    王永生. 喷水推进和泵喷推进的概念: 共性、特性及区别. 中国舰船研究, 2019, 14(5): 1-9, 41 (Wang Yongsheng. Concepts of waterjet propulsion and pumpjet propulsion: their common characteristics, special characteristics and differences. Chinese Journal of Ship Research, 2019, 14(5): 1-9, 41 (in Chinese)
    [4]
    McCormick BW, Elsenhuth JJ. Design and performance of propellers and pumpjets for underwater propulsion. AIAA Journal, 1963, 1(10): 2348-2354 doi: 10.2514/3.2065
    [5]
    Henderson RE, McMahon JF, Wislicenus GF. A method for the design of pumpjets. DTIC Report No. AD439631, Pennsylvania State University, 1964
    [6]
    Bruce EP, Gearhart WS, Ross JR, et al. The design of pumpjets for hydrodynamic propulsion//Lakshminarayana B, Werner R, Britsch WSG. Proceedings of Fluid Mechanics, Acoustics, and Design of TurBomachinery-Part II. Pennsylvania: Pennsylvania State University, 1974: 795-839
    [7]
    Jacobs WR, Tsakonas S, Liao P. The linearized unsteady lifting surface theory applied to the pump-jet propulsive system. DTIC Report No. AD-A110833, Stevens Institute of Technology, 1981
    [8]
    Furuya O, Chiang WL. A new pumpjet design theory. DTIC Report No. AD-A201353, Honeywell Inc, 1988
    [9]
    Ivanell, S. Hydrodynamic simulation of a torpedo with pumpjet propulsion system. [Master thesis]. Stockholm: Royal Institute of Technology, 2001
    [10]
    Das HN, Jayakumar P, Saji VF, et al. CFD examination of interaction of flow on high-speed submerged body with pumpjet propulsor//5th International Conference on High-performance Marine Vehicles. Launceston, 2006. Australia: Australian Maritime College, 2006: 466-479
    [11]
    Suryanarayana C, Satyanarayana B, Ramji K, et al. Cavitation studies on axi-symmetric underwater body with pumpjet propulsor in cavitation tunnel. International Journal of Naval Architecture and Ocean Engineering, 2010, 2(4): 185-194 doi: 10.2478/IJNAOE-2013-0035
    [12]
    Suryanarayana C, Satyanarayana B, Ramji K, et al. Experimental evaluation of pumpjet propulsor for an axi-symmetric body in wind tunnel. International Journal of Naval Architecture and Ocean Engineering, 2010, 2(1): 24-33 doi: 10.2478/IJNAOE-2013-0016
    [13]
    Suryanarayana C, Satyanarayana B, Ramji K. Performance evaluation of an underwater body and pumpjet by model testing in cavitation tunnel. International Journal of Naval Architecture and Ocean Engineering, 2010, 2(2): 57-67 doi: 10.2478/IJNAOE-2013-0020
    [14]
    Motallebi-Nejad M, Bakhtiari M, Ghassemi H, et al. Numerical analysis of ducted propeller and pumpjet propulsion system using periodic computational domain. Journal of Marine Science and Technology, 2017, 22(3): 559-573 doi: 10.1007/s00773-017-0438-x
    [15]
    Shirazi AT, Nazari MR, Manshadi MD. Numerical and experimental investigation of the fluid flow on a full-scale pump jet thruster. Ocean Engineering, 2019, 182: 527-539 doi: 10.1016/j.oceaneng.2019.04.047
    [16]
    韩瑞德, 夏长生. 泵喷射推进器的设计方法及设计准则//第六届全国工业与环境流体力学会议论文集, 2001: 122-127

    Han Ruide, Xia Changshen. Design method and criteria of pumpjet//Proceedings of the 6th National Conference on Industrial and Environmental Hydrodynamics, 2001. 122-127 (in Chinese)
    [17]
    韩瑞德, 李天森, 夏长生. 鱼雷泵喷推进器设计//第七届全国工业与环境流体力学会议论文集, 2003: 217-275

    Han Ruide, Li Tiansen, Xia Changshen. Design of torpedo pumpjet//Proceedings of the 7th National Conference on Industrial and Environmental Hydrodynamics, 2003: 217-275 (in Chinese)
    [18]
    刘业宝. 水下航行器泵喷推进器设计方法研究. [博士论文]. 哈尔滨: 哈尔滨工程大学, 2013

    Liu Yebao. Study on design method of pump jet thruster for underwater vehicles. [PhD Thesis]. Harbin: Harbin Engineering University, 2013 (in Chinese)
    [19]
    何东林. 集成电机泵喷推进器技术研究. [硕士论文]. 西安: 西北工业大学, 2005

    He Donglin. Research on the design technology of integrated pump jet propulsor. [Master Thesis]. Xi’an: Northwestern Polytechnical University, 2005 (in Chinese)
    [20]
    胡斌. 集成电机推进器总体设计技术研究. [硕士论文]. 西安: 西北工业大学, 2013

    Hu Bin. Research on the overall design technology of integrated motor propulsor. [Master thesis]. Xi’an: Northwestern Polytechnical University, 2013 (in Chinese)
    [21]
    鹿麟. 泵喷推进器设计与流场特性研究. [博士论文]. 西安: 西北工业大学, 2016

    Lu Lin. Research on design and flow field characteristics of the pumpjet propulsor. [PhD Thesis]. Xi’an: Northwestern Polytechnical University, 2016 (in Chinese)
    [22]
    杨卫国, 汲国瑞, 蔡佑林. 前置导叶喷水推进轴流泵设计方法. 舰船科学技术, 2020, 42(11): 44-49

    Yang Weiguo, Ji Guorui, Cai Youlin. Research on design method of water jet propulsion axial-flow pump with front guide vane. Ship Science and Technology, 2020, 42(11): 44-49 (in Chinese)
    [23]
    王小二, 张振山, 张萌. 水下航行体泵喷推进器设计与性能分析. 海军工程大学学报, 2018, 30(4): 66-70, 112 (Wang Xiaoer, Zhang Zhenshan, Zhang Meng. Design and hydrodynamics performance analysis of pumpjet for underwater vehicle. Journal of Naval University of Engineering, 2018, 30(4): 66-70, 112 (in Chinese)
    [24]
    靳栓宝, 祝昊, 王东等. 水下航行体泵喷推进器总体选型与设计. 哈尔滨工程大学学报, 2018, 39(5): 56-61 (Jin Shuanbao, Zhu Hao, Wang Dong, et al. Research on the global parameters selection and design of pumpjet of underwater vehicle. Journal of Harbin Engineering University, 2018, 39(5): 56-61 (in Chinese)
    [25]
    张明宇, 林瑞霖, 王永生等. 泵喷的三维反问题设计及其与螺旋桨的敞水特性对比. 哈尔滨工程大学学报, 2017, 38(5): 690-696 (Zhang Mingyu, Lin Ruilin, Wang Yongsheng, et al. 3-D inverse design of pumpjet and comparison with opening water performance of original propeller. Journal of Harbin Engineering University, 2017, 38(5): 690-696 (in Chinese)
    [26]
    张明宇, 俞伟强, 吴晓阳等. 喷水推进器设计及水力性能预报方法. 船舶物资与市场, 2020, 176(10): 17-22 (Zhang Mingyu, Yu Weiqiang, Wu Xiaoyang, et al. Design and hydrodynamic performance prediction method of water-jet propulsor. Ship Materials and Market, 2020, 176(10): 17-22 (in Chinese)
    [27]
    饶志强. 基于面元法的潜艇推进器水动力性能优化设计方法研究. [博士论文]. 上海: 上海交通大学, 2017

    Rao Zhiqiang. Study of hydrodynamic optimization approach of submarine propulsors based on panel method. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2017 (in Chinese)
    [28]
    谷浪. 鱼雷泵喷推进器设计及水动力性能预报方法研究. [博士论文]. 哈尔滨: 哈尔滨工程大学, 2019

    Gu Lang. Design and hydrodynamic performance prediction methods investigation of torpedo pumpjet propulsor. [PhD Thesis]. Harbin: Harbin Engineering University, 2018 (in Chinese)
    [29]
    刘小龙. 水下航行体泵喷推进器非定常水动力预报的面元法研究. [博士论文]. 上海: 上海交通大学, 2006

    Liu Xiaolong. Prediction of unsteady performances of pumpjet propulsors for underwater vehicle by a potential based panel method. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2006 (in Chinese)
    [30]
    董新国, 刘建国, 戴原星等. 基于喷水推进理论的泵喷推进性能预报研究. 舰船科学技术, 42(6): 5

    Dong Xinguo, Liu Jianguo, Dai Yuanxing, et al. Research on the prediction of propulsion performance of pumpjet based on the theory of waterjet. Ship Science and Technology, 42(6): 5 (in Chinese)
    [31]
    陈月林, 韩瑞德. 泵喷射推进器性能的变分有限元数值分析. 上海力学, 1994, 15(3): 59-64 (Chen Yuelin, Han Ruide. Characteristic analysis of the impeller of a jet pump numerically by FEM and ITS variational principle. Shanghai Journal of Mechanics, 1994, 15(3): 59-64 (in Chinese)
    [32]
    刘高联, 韩瑞德, 郭加宏等. 应用变域变分原理与有限元法求解泵喷射推进器外流场. 中国造船, 1998, 1: 25-29 (Liu Gaolian, Han Ruide, Guo Jiahong, et al. A variable domain variational finite element analysis of flow around pumpjet. Shipbuilding of China, 1998, 1: 25-29 (in Chinese)
    [33]
    王涛, 周连第, 张鑫. 轴对称体与导管推进器组合体的三维复杂流场的计算与分析. 船舶力学, 2003, 7(2): 21-32 (Wang Tao, Zhou Liandi, Zhang Xin. Numerical simulation of 3-D integrative viscous complicated flow flied around axisymmetric body with ducted propulsion. Journal of Ship Mechanics, 2003, 7(2): 21-32 (in Chinese) doi: 10.3969/j.issn.1007-7294.2003.02.003
    [34]
    胡欲立, 刘文峰. 基于FLUENT的泵喷射推进器内流场仿真. 机械与电子, 2009, 11(11): 29-32 (Hu Yuli, Liu Wenfeng. The inside flow field simulation of pump-jet propulsor based on the software FLUENT. Machinery and Electronics, 2009, 11(11): 29-32 (in Chinese)
    [35]
    刘占一, 宋保维, 黄桥高等. 基于CFD技术的泵喷推进器水动力性能仿真方法. 西北工业大学学报, 2010, 28(5): 724-729 (Liu Zhanyi, Song Baowei, Huang Qiaogao, et al. Applying CFD technique to calculate successfully hydrodynamic performance of water jet pump. Journal of Northwestern Polytechnical University, 2010, 28(5): 724-729 (in Chinese) doi: 10.3969/j.issn.1000-2758.2010.05.017
    [36]
    段相杰, 董永香, 冯顺山等. 泵喷推进航行体有动力流场数值仿真. 弹箭与制导学报, 2012, 32(3): 161-163 (Duan Xiangjie, Dong Yongxiang, Feng Shunshan, et al. The numerical simulation of flow field for underwater vehicle with pump jet propulsion. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(3): 161-163 (in Chinese) doi: 10.3969/j.issn.1673-9728.2012.03.044
    [37]
    潘光, 胡斌, 王鹏等. 泵喷推进器定常水动力性能数值模拟. 上海交通大学学报, 2013, 47(6): 932-937 (Pan Guang, Hu Bin, Wang Peng, et al. Numerical simulation of steady hydrodynamics performance of a pump-jet propulsor. Journal of Shanghai Jiao Tong University, 2013, 47(6): 932-937 (in Chinese)
    [38]
    Li H, Huang QG, Pan G, et al. The transient prediction of a pre-swirl stator pump-jet propulsor and a comparative study of hybrid RANS/LES simulations on the wake vortices. Ocean Engineering, 2020, 203: 107224 doi: 10.1016/j.oceaneng.2020.107224
    [39]
    Li H, Huang QG, Pan G, et al. Assessment of transition modeling for the unsteady performance of a pump-jet propulsor in model scale. Applied Ocean Research, 2021, 108(7): 102537
    [40]
    Ji XQ, Yang CJ, Dong XQ. Numerical design study of duct and stator for a pump-jet propulsor//39th International Conference on Ocean, Offshore and Arctic Engineering, 2020
    [41]
    Qiu CC, Pan G, Shi Y, et al. Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow. International Journal of Naval Architecture and Ocean Engineering, 2020, 12: 102-115
    [42]
    张凯, 叶金铭. 基于凹槽结构的泵喷推进器梢涡控制效果及计算方法. 舰船科学技术, 2020, 42(5): 57-62 (Zhang Kai, Ye Jinming. Research on the tip vortex control effect and calculation method of pumpjet thruster based on groove structure. Ship Science and Technology, 2020, 42(5): 57-62 (in Chinese)
    [43]
    Li H, Pan G, Huang QG. Transient analysis of the fluid flow on a pumpjet propulsor. Ocean Engineering, 2019, 191: 106520 doi: 10.1016/j.oceaneng.2019.106520
    [44]
    Yu HT, Duan NY, Hua HX, et al. Propulsion performance and unsteady forces of a pump-jet propulsor with different pre-swirl stator parameters. Applied Ocean Research, 2020, 100: 102184 doi: 10.1016/j.apor.2020.102184
    [45]
    Huang QG, Li H, Pan G, et al. Effects of duct parameter on pump-jet propulsor unsteady hydrodynamic performance. Ocean Engineering, 2021, 221: 108509 doi: 10.1016/j.oceaneng.2020.108509
    [46]
    谷浪, 王超, 胡健等. 采用带梢隙涡模型的面元法预报泵喷水动力性能. 中国造船, 2017, 58(4): 14-23 (Gu Lang, Wang Chao, Hu Jian, et al. Hydrodynamic performance prediction of pumpjet using surface panel method together with tip gap vortex model. Shipbuilding of China, 2017, 58(4): 14-23 (in Chinese) doi: 10.3969/j.issn.1000-4882.2017.04.002
    [47]
    Wang C, Weng KQ, Guo CY, et al. Prediction of hydrodynamic performance of pump propeller considering the effect of tip vortex. Ocean Engineering, 2019, 171: 259-272 doi: 10.1016/j.oceaneng.2018.10.039
    [48]
    Wang C, Weng KQ, Guo CY, et al. Analysis of influence of duct geometrical parameters on pump jet propulsor hydrodynamic performance. Journal of Marine Science and Technology, 2020, 25(2): 640-657 doi: 10.1007/s00773-019-00662-z
    [49]
    董新国, 林辉, 严鹏等. 导管剖面倾角和拱度对泵喷与艇体相互作用影响的数值分析. 船舶, 2020, 31(5): 11-20 (Dong Xinguo, Lin hui, Yan Peng, et al. Numerical analysis of influence of duct inclination angle and camber on interaction between pump jet and hull. Ship and Boat, 2020, 31(5): 11-20 (in Chinese)
    [50]
    施瑶, 潘光, 王鹏等. 泵喷推进器空化特性数值分析. 上海交通大学学报, 2014, 48(8): 1059-1064 (Shi Yao, Pan Guang, Wang Peng, et al. Numerical simulation of cavitation characteristics of a pump-jet propeller. Journal of Shanghai Jiao Tong University, 2014, 48(8): 1059-1064 (in Chinese)
    [51]
    鹿麟, 潘光. 泵喷推进器非定常空化性能数值模拟分析. 上海交通大学学报, 2015, 49(2): 262-268 (Lu Lin, Pan Guang. Numerical simulation analysis of unsteady cavitation performance of a pump-jet university. Journal of Shanghai Jiao Tong University, 2015, 49(2): 262-268 (in Chinese)
    [52]
    张明宇, 俞伟强, 石钰. 泵喷推进器抗空化性能分析. 船舶工程, 2021, 43(1): 6 (Zhang Mingyu, Yu Weiqiang, Shi Yu. Anti-cavitation performance analysis of pumpjet propulsor. Ship Building, 2021, 43(1): 6 (in Chinese)
    [53]
    Li H, Pan G, Huang QG, et al. Numerical prediction of the pumpjet propulsor tip clearance vortex cavitation in uniform flow. Journal of Shanghai Jiaotong University (Science), 2020, 25(3): 352-364
    [54]
    Yuan JP, Chen Y, Wang LY, et al. Dynamic analysis of cavitation tip vortex of pump-jet propeller based on DES. Applied Sciences, 2020, 10(17): 5998 doi: 10.3390/app10175998
    [55]
    Han CZ, Xu S, Cheng HY, et al. LES method of the tip clearance vortex cavitation in a propelling pump with special emphasis on the cavitation-vortex interaction. Journal of Hydrodynamics, 2020, 32(6): 1212-1216 doi: 10.1007/s42241-020-0070-9
    [56]
    Peng LH, Lu JH. Study on the pump jet tone. Journal of Ocean University of Qingdao, 1998, 28(3): 447-451
    [57]
    赵兵, 尹韶平, 高涌等. 鱼雷泵喷射推进器流动干涉发声机理研究. 鱼雷技术, 2009, 17(2): 1-4 (Zhao Bing, Yin Shaoping, Gao Yong, et al. Study on noise generation mechanism of flow interference for torpedo pump jet propulsor. Torpedo Technology, 2009, 17(2): 1-4 (in Chinese)
    [58]
    付建, 宋振海, 王永生等. 泵喷推进器水动力噪声的数值预报. 船舶力学, 2016, 20(5): 613-619 (Fu jian, Song Zhenhai, Wang Yongsheng, et al. Numerical predicting of hydroacoustics of pumpjet propulsor. Journal of Ship Mechanics, 2016, 20(5): 613-619 (in Chinese) doi: 10.3969/j.issn.1007-7294.2016.05.012
    [59]
    刘敏, 张宁, 李新汶等. 泵喷推进器导管对噪声传播特性的影响. 舰船科学技术, 2011, 33(8): 20-23 (Liu Min, Zhang Ning, Li Xinwen, et al. Studies of the effects of pump-jet propeller duct on noise propagation characteristic. Ship Science and Technology, 2011, 33(8): 20-23 (in Chinese) doi: 10.3404/j.issn.1672-7649.2011.08.005
    [60]
    卢丁丁, 付建. 泵喷推进器导管对转子声场的影响. 鱼雷技术, 2016, 24(6): 407-411 (Lu Dingding, Fu Jian. Effect of pump-jet propulsor duct on sound field of rotor. Torpedo Technology, 2016, 24(6): 407-411 (in Chinese)
    [61]
    张明宇, 林瑞霖, 王永生等. 潜艇无轴泵喷推进器水下辐射噪声数值预报及分析. 船舶力学, 2018, 22(11): 1323-1332 (Zhang Mingyu, Lin Ruilin, Wang Yongsheng, et al. Numerical prediction and analysis of underwater radiated noise of no-shaft pumpjet. Journal of Ship Mechanics, 2018, 22(11): 1323-1332 (in Chinese) doi: 10.3969/j.issn.1007-7294.2018.11.002
    [62]
    张明宇, 王永生, 林瑞霖等. 泵喷推进器低噪声优化设计. 华中科技大学学报(自然科学版), 2019, 47(3): 7-12 (Zhang Mingyu, Wang Yongsheng, Lin Ruilin, et al. Low-noise optimization design of pumpjet. Journal Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(3): 7-12 (in Chinese)
    [63]
    黄修长, 师帅康, 苏智伟等. 分布式流体脉动压力激励下泵喷推进器的结构辐射噪声分析. 振动与冲击, 2021, 40(10): 89-94, 113 (Huang Xiuchang, Shi Shuaikang, Su Zhiwei, et al. Vibro-acoustic responses of a pump-jet under distributed unsteady hydrodynamic forces. Journal of Vibration and Shock, 2021, 40(10): 89-94, 113 (in Chinese)
    [64]
    Qin DH, Pan G, Lee S, et al. Underwater radiated noise reduction technology using sawtooth duct for pumpjet propulsor. Ocean Engineering, 2019, 188: 106228 doi: 10.1016/j.oceaneng.2019.106228
    [65]
    Sun Y, Liu W, Li TY. Numerical investigation on noise reduction mechanism of serrated trailing edge installed on a pump-jet duct. Ocean Engineering, 2019, 191: 106489 doi: 10.1016/j.oceaneng.2019.106489
    [66]
    孙明宇, 董小倩, 杨晨俊. 泵喷推进器水动力尺度效应数值仿真与分析. 水下无人系统学报, 2020, 28(5): 70-78 (Sun Mingyu, Dong Xiaoqian, Yang Chenjun. Numerical simulation and analysis of hydrodynamics scale effect of pump-jet propulsor. Journal of Unmanned Undersea Systems, 2020, 28(5): 70-78 (in Chinese)
    [67]
    Hu J, Weng KQ, Wang C, et al. Prediction of hydrodynamic performance of pump jet propulsor considering the effect of gap flow model. Ocean Engineering, 2021, 233: 109162 doi: 10.1016/j.oceaneng.2021.109162
    [68]
    翁凯强, 王超, 胡健等. 间隙流动模型对泵喷推进器水动力性能的影响. 哈尔滨工程大学学报, 2021, 42(1): 21-26 (Weng Kaiqiang, Wang Chao, Hu Jian, et al. Effect of the gap-flow model on the hydrodynamic performance of a pump-jet propulsor. Journal of Harbin Engineering University, 2021, 42(1): 21-26 (in Chinese)
    [69]
    李晗. 泵喷推进器水动力噪声特性分析. [硕士论文]. 西安: 西北工业大学, 2019

    Li Han. Analysis of pumpjet propulsor hydrodynamic noise characteristics. [Master Thesis]. Xi’an: Northwestern Polytechnical University, 2019 (in Chinese)
    [70]
    Yu HT, Zhang ZG, Hua HX. Numerical investigation of tip clearance effects on propulsion performance and pressure fluctuation of a pump-jet propulsor. Ocean Engineering, 2019, 192: 106500 doi: 10.1016/j.oceaneng.2019.106500
    [71]
    Ji XQ, Dong XQ, Yang CJ. Attenuation of the tip-clearance flow in a pump-jet propulsor by thickening and raking the tips of rotor blades: a numerical study. Applied Ocean Research, 2021, 113: 102723 doi: 10.1016/j.apor.2021.102723
    [72]
    饶志强, 李巍, 杨晨俊. 定子参数变化对前置定子导管桨性能的影响. 上海交通大学学报, 2013, 47(2): 269-273 (Rao Zhiqiang, Li Wei, Yang Chenjun. The effect of stator parameter on performance of ducted propeller with pre-swirl stators. Journal of Shanghai Jiao Tong Universiity, 2013, 47(2): 269-273 (in Chinese)
    [73]
    谷浪, 王超, 胡健. 泵喷水动力性能预报及导管拱度的影响分析. 哈尔滨工程大学学报, 2018, 39(11): 24-31 (Gu Lang, Wang Chao, Hu Jian. Hydrodynamic performance prediction of a pump-jet and impact analysis of a duct camber. Journal of Harbin Engineering University, 2018, 39(11): 24-31 (in Chinese)
    [74]
    Li H, Huang QG, Pan G, et al. The scale effects on the open water performance of a pump-jet propulsor. Journal of Marine Science and Technology, 2021. doi: 10.1007/s00773-021-00838-6
    [75]
    阳峻, 冯大奎, 张航等. 泵喷式推进器数值模拟及尺度效应分析. 中国造船, 2020, 61(S2): 91-99 (Yang Jun, Feng Dakui, Zhang Hang, et al. Numerical simulation of pump jet propulsor and analysis of scale effect. Shipbuilding of China, 2020, 61(S2): 91-99 (in Chinese)
    [76]
    王涛, 周连第. 泵喷推进器内间隙流与主流相互作用的数值模拟和机理研究//2004年船舶水动力学学术会议论文集, 武汉, 2004: 215-226

    Wang Tao, Zhou Liandi. Numerical simulation and mechanism study on the interaction between tip clearance flow and main flow in pump jet propulsor//Proceedings of 2004 Academic Conference on Ship Hydrodynamics, Wuhan, 2004: 215-226 (in Chinese)
    [77]
    柯久久. 泵喷推进器间隙流动及其对噪声特性影响的研究. [硕士论文]. 西安: 西北工业大学, 2016

    Ke Jiujiu. The research of pump jet propulsor clearance flow and its impact on nosie characteristics. [Master Thesis]. Xi’an: Northwestern Polytechnical University, 2016 (in Chinese)
    [78]
    Hunt JCR, Wray AA, Moin P. Eddies, stream, and convergence zones in turbulent flows. Center of Turbulence Research Report CTR-S88, 1988: 193-208
    [79]
    Li H, Huang QG, Pan G, et al. Wake instabilities of a pre-swirl stator pump-jet propulsor. Physics of Fluids, 2021, 33(8): 085119
    [80]
    Liu CQ, Wang YQ, Yang Y, et al. New omega vortex identification method. Science China Physics, Mechanics and Astronomy, 2016, 59(8): 1-9
    [81]
    Li H, Huang QG, Pan G. Investigation on the propulsion of a pump-jet propulsor in an effective wake. Journal of Fluids Engineering, 2022, 144(5): 051205
  • Related Articles

    [1]Zhong Jiawen, Zhou Shuigen, Song Jinze, Zhu Hongjun. PREDICTION OF HYDRODYNAMIC CHARACTERISTICS PARAMETERS OF THREE TANDEM CIRCULAR CYLINDERS BASED ON XGBoost-SHAP[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(4): 843-853. DOI: 10.6052/0459-1879-24-493
    [2]Ma Zhiming, Zhang Xin. FLOW FIELD PRODUCED BY A PLASMA SYNTHETIC JET ACTUATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(2): 380-387. DOI: 10.6052/0459-1879-24-045
    [3]Ma Kaidong, Zhang Ruirong, Guo Xin, Xu Mingyang, Pu Yuxue. SHAPE DESIGN AND FLOW FIELD CHARACTERISTICS OF A ROBOTIC FISH IMITATING THE HEAD OF A HAMMERHEAD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3389-3398. DOI: 10.6052/0459-1879-21-160
    [4]Tian Haigang, Shan Xiaobiao, Zhang Jubin, Sui Guangdong, Xie Tao. OUTPUT CHARACTERISTICS INVESTIGATION OF AIRFOIL-BASED FLUTTER PIEZOELECTRIC ENERGY HARVESTER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3016-3024. DOI: 10.6052/0459-1879-21-377
    [5]Jiahuang Tu, Xiaoling Tan, Xuhui Deng, Xiaogang Guo, Jingqun Liang, Ping Zhang. STUDY OF FLOW-INDUCED MOTION CHARACTERISTICS OF THREE TANDEM CIRCULAR CYLINDERS IN PLANAR SHEAR FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 787-802. DOI: 10.6052/0459-1879-18-348
    [6]Wu Yingxiang, Lin Liming, Zhong Xingfu. INVESTIGATION IN HYDRODYNAMICS OF A CIRCULAR CYLINDER WITH THE NEW SUPPRESSING SHROUD FOR VORTEX-INDUCED VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 307-317. DOI: 10.6052/0459-1879-14-300
    [7]Tieqiao Tang, Haijun Huang, S.C. Wong, Rui Jiang. Lane changing analysis for two-lane traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 49-54. DOI: 10.6052/0459-1879-2007-1-2006-282
    [8]Kejun Yang, Shuyou Cao, Xingnian Liu. Flow resistance in compound channels and its prediction methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 23-31. DOI: 10.6052/0459-1879-2007-1-2006-017
    [9]HYDRODYNAMIC FORCES ACTING ON A CIRCULAR CYLINDER NEAR A WAVY BOUNDARY IN STEADY FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(3): 265-273. DOI: 10.6052/0459-1879-1991-3-1995-837
    [10]分层流体中栅格湍流的特性[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(3): 257-264. DOI: 10.6052/0459-1879-1991-3-1995-836
  • Cited by

    Periodical cited type(4)

    1. 陈鹏磊,梁宁,丁永乐,张坚伟,李健,曹琳琳,吴大转. 水下推进器转子叶片数与伴流场的匹配关系研究. 推进技术. 2025(02): 94-107 .
    2. 张康宇,路宽,程晖,傅超,郭栋. 基于共振转换器的自主水下航行器动力学建模及减振降噪. 力学学报. 2023(10): 2274-2287 . 本站查看
    3. 夏林生,付敏飞,张春泽. 基于叶梢小翼的泵喷推进器梢隙涡控制方法数值研究. 船舶. 2023(06): 94-101 .
    4. 汤王豪,黄修长,饶志强,华宏星. 泵喷定子襟翼作动对转子非定常力抑制方法数值研究. 中国舰船研究. 2023(06): 21-29 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1737) PDF downloads (312) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return