EI、Scopus 收录
中文核心期刊
Liu Longfei, Liu Lianhuang, Hu Li, Yang Zhicheng. Effect of surface processing plastic layer on self-organized single rotation initiation of shear bands in metal cylindrical shell. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1051-1062. DOI: 10.6052/0459-1879-21-482
Citation: Liu Longfei, Liu Lianhuang, Hu Li, Yang Zhicheng. Effect of surface processing plastic layer on self-organized single rotation initiation of shear bands in metal cylindrical shell. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1051-1062. DOI: 10.6052/0459-1879-21-482

EFFECT OF SURFACE PROCESSING PLASTIC LAYER ON SELF-ORGANIZED SINGLE ROTATION INITIATION OF SHEAR BANDS IN METAL CYLINDRICAL SHELL

  • Received Date: September 16, 2021
  • Accepted Date: February 20, 2022
  • Available Online: February 21, 2022
  • In the process of high-speed collapse of metal cylindrical shell loaded by external explosion, the shear band formed by plastic shear instability has high self-organization characteristics, and even forms a single direction spiral pattern - shear bands are dominant in clockwise or counterclockwise direction. When the cylindrical shell collapses, the maximum shear stress is located on the inner surface of the cylindrical shell. The nucleation and propagation behaviors of the shear band are significantly affected by the mesoscopic state of the material on the inner surface. In this paper, AISI 1020 steel cylindrical shells with plastic layers of different thickness on the inner surface are obtained by selecting materials and controlling the cylindrical shell processing technology. The effect of surface processing plastic layer on the initiation of self-organized single rotation phenomenon of adiabatic shear band of metal cylindrical shell and its physical mechanism are studied by using thick-walled cylinder experiment. The experimental results show that the processed plastic layer on the inner surface of the metal cylindrical shell significantly changes the initial conditions of the shear band. Shear bands are nucleated and distributed in the clockwise and counterclockwise direction. The proportion of clockwise or counterclockwise shear bands in the total shear bands is dependent on the thickness and grain stretching direction of the plastic layer in samples. The results indicate that the thicker plastic layer with a single grain stretching direction is easier to form a single direction spiral structure of shear bands, either clockwise or counterclockwise. In addition, samples with a thick layer have a higher nucleation rate, a smaller spacing and a higher propagation velocity of shear bands, in comparison with those of a thin layer at the same effective strain. The results can provide a valuable reference for understanding the dominant orientation of adiabatic shear bands in the process of high-speed collapse of metal cylindrical shell.
  • [1]
    Dodd B, Bai Y. Adiabatic Shear Localization: Frontiers and Advances. Elsevier, 2012
    [2]
    Meyers MA. Dynamic Behavior of Materials. Wiley Press, 1994
    [3]
    Wright TW. The Physics and Mathematics of Adiabatic Shear Bands. Cambridge: Cambridge University Press, 2002
    [4]
    Xue Q, Meyers MA, Nesterenko VF. Self-organization of shear bands in titanium and Ti-6 Al-4 V alloy. Acta Materialia, 2002, 50: 575-596
    [5]
    Bai YL. Adiabatic shear banding. Res. Mechanica, 1990, 31: 109-119
    [6]
    Dai LH, Liu LF, Bai YL. Formation of adiabatic shear band in metal matrix composites. International Journal of Solids and Structures, 2004, 41(22-23): 5979-5993 doi: 10.1016/j.ijsolstr.2004.05.023
    [7]
    Dai LH, Bai YL. Basic mechanical behaviors and mechanics of shear banding in BMGs. International Journal of Impact Engineering, 2008, 35(8): 704-716 doi: 10.1016/j.ijimpeng.2007.10.007
    [8]
    Jiang MQ, Dai LH. Formation mechanism of lamellar chips during machining of bulk metallic glass. Acta Materialia, 2009, 57(9): 2730-2738 doi: 10.1016/j.actamat.2009.02.031
    [9]
    Meyers MA, Nesterenko VF, LaSalvia JC, et al. Shear localization in dynamic deformation of materials: Microstructural evolution and self-organization. Materials Science and Engineering: A, 2001, 317(1-2): 204-225 doi: 10.1016/S0921-5093(01)01160-1
    [10]
    刘明涛, 汤铁钢, 胡海波等. 不同起爆方式下炸药驱动柱壳膨胀断裂的数值模拟. 爆炸与冲击, 2014, 34(4): 415-420 (Liu Mingtao, Tang Tiegang, Hu Haibo, et al. Numerical simulation of expansion and fracture of cylindrical shell driven by explosives in different detonation methods. Explosion and Shock Waves, 2014, 34(4): 415-420 (in Chinese)
    [11]
    胡海波, 汤铁钢, 胡八一等. 金属柱壳在爆炸加载断裂中的单旋现象. 爆炸与冲击, 2004, 24(2): 97-107 (Hu Haibo, Tang Tiegang, Hu Bayi, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells. Explosion and Shock Waves, 2004, 24(2): 97-107 (in Chinese)
    [12]
    Guo Y, Ruan Q, Zhu S, et al. Temperature rise associated with adiabatic shear band: causality clarified. Physical Review Letters, 2019, 122(1): 015503 doi: 10.1103/PhysRevLett.122.015503
    [13]
    Timothy SP, Hutchings IM. The structure of adiabatic shear bands in a titanium alloy. Acta Metallurgica, 1985, 33(4): 667-676 doi: 10.1016/0001-6160(85)90030-6
    [14]
    Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. Journal of Applied Physics, 1944, 15(1): 22-32 doi: 10.1063/1.1707363
    [15]
    Yang Y, Yang S, Jiang L. Study on the microstructural characteristics of adiabatic shear band in solid-solution treated ZK60 magnesium alloy. Materials Characterization, 2019, 156: 109840
    [16]
    董杰, 王雨田, 胡晶等. 非晶合金剪切带动力学行为研究. 力学学报, 2020, 52(2): 379-391 (Dong Jie, Wang Yutian, Hu Jing, et al. Shear-band dynamics in metallic glasses. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 379-391 (in Chinese)
    [17]
    郝奇, 乔吉超, Jean-Marc Pelletier. 锆基非晶合金的动态弛豫机制和高温流变行为. 力学学报, 2020, 52(2): 360-368 (Hao Qi, Qiao Jichao, Jean-Marc Pelletier. Dynamic relaxation characteristics and high temperature flow behavior of Zr-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 360-368 (in Chinese) doi: 10.6052/0459-1879-20-004
    [18]
    陈海华, 张先锋, 熊玮等. WFeNiMo 高熵合金动态力学行为及侵彻性能研究. 力学学报, 2020, 52(5): 1443-1453 (Chen Haihua, Zhang Xianfeng, Xiong Wei et al. Dynamic mechanical behavior and penetration performance of WFeNiMo high-entropy alloy. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443-1453 (in Chinese) doi: 10.6052/0459-1879-20-166
    [19]
    黄西成. 内爆与外爆加载下壳体的力学状态及破坏模式分析. [博士论文]. 绵阳: 中国工程物理研究院, 2010

    Huang Xicheng. Analysis of mechanical state and failure mode of shell under implosion and external explosion. [PhD Thesis]. Mianyang: China Academy of Engineering Physics, 2010 (in Chinese)
    [20]
    朱建士, 陈裕泽. 核武器研制中的力学问题. 力学与实践, 2002, 1: 67-71 (Zhu Jianshi, Chen Yuze. The mechanics of nuclear weapons development. Mechanics in Engineering, 2002, 1: 67-71 (in Chinese)
    [21]
    杨云川, 朱建军, 郑宇等. 战斗部壳体爆炸破片体/线分形维数研究. 兵工学报, 2018, 39(8): 1499-1506 (Yang Yunchuan, Zhu Jianjun, Zheng Yu, et al. Research on the volume and line fractal dimensions of fragments from the explosion of warhead shell. Acta Armamentari, 2018, 39(8): 1499-1506 (in Chinese)
    [22]
    Mott NF. A Theory of the Fragmentation of Shells and Bombs//Berlin: Springer, 2006: 243-294
    [23]
    刘龙飞, 周强. 表面粗糙度对6061铝合金薄壁管冲击膨胀断裂性能的影响. 爆炸与冲击, 2018, 38(4): 749-758 (Liu Longfei, Zhou Qiang. Effect of surface roughness on impact expansion fracture of 6061 aluminum alloy thin-walled cylindrical tube. Explosion and Shock Waves, 2018, 38(4): 749-758 (in Chinese)
    [24]
    Nesterenko VF, Lazaridi AN, Pershin SA. Localization of deformation in copper by explosive compression of hollow cylinders. Fizika Goreniyai Vzryva, 1989, 25(4): 154-155
    [25]
    Chen YJ, Meyers MA, Nesterenko VF. Spontaneous and forced shear localization in high-strain-rate deformation of tantalum. Materials Science and Engineering A, 1999, 268(1-2): 70-82 doi: 10.1016/S0921-5093(99)00110-0
    [26]
    Nesterenko VF, Xue Q , Meyers MA. Self-organization of shear bands in Ti, Ti-6%Al-4%V and 304 stainless steel. Journal of Physics, 2000, 10 : 269-274
    [27]
    Xue Q, Meyers MA, Nesterenk VF. Self organization of shear bands in stainless steel. Materials Science and Engineering A, 2004, 384: 35-46
    [28]
    Xue Q, Nesterenk VF, Meyers MA. Evaluation of the collapsing thick-walled cylinder technique for shear-band spacing. International Journal of Impact Engineering, 2003, 28: 257-280 doi: 10.1016/S0734-743X(02)00103-3
    [29]
    Lovinger Z, Rikanati A, Rosenberg Z, et al. Electro-magnetic collapse of thick-walled cylinders to investigate spontaneous shear localization. International Journal of Impact Engineering, 2011, 38(11): 918-929 doi: 10.1016/j.ijimpeng.2011.06.006
    [30]
    汤铁钢, 胡海波, 王德生等. 内爆压缩加载下抗氢钢圆管剪切断裂研究. 高压物理学报, 2002, 16(1): 75-79 (Tang Tiegang‚ Hu Haibo, Wang Desheng, et al. Shear fracture of Hr-2 steel tube under shock loading. Chinese Journal of High Pressure Physics, 2002, 16(1): 75-79 (in Chinese) doi: 10.3969/j.issn.1000-5773.2002.01.013
    [31]
    汤铁钢, 胡海波, 李庆忠等. 高应变率压缩加载下LY12铝圆管的剪切断裂研究. 高压物理学报, 2003, 17(2): 129-134 (Tang Tiegang, Hu Haibo, Li Qingzhong, et al. Shear fractures of LY12 aluiminum cylinder under high strain rate implosive loading. Chinese Journal of High Pressure Physics, 2003, 17(2): 129-134 (in Chinese) doi: 10.3969/j.issn.1000-5773.2003.02.009
    [32]
    Yang Y, Zeng Y, Gao ZW. Numerical and experimental studies of self-organization of shear bands in 7075 aluminium alloy. Materials Science and Engineering: A, 2008, 496(1-2): 291-302 doi: 10.1016/j.msea.2008.07.043
    [33]
    Yang Y, Zeng Y, Li DH, et al. Damage and fracture mechanism of aluminium alloy thick-walled cylinder under external explosive loading. Materials Science and Engineering:A, 2008, 490(1-2): 378-384 doi: 10.1016/j.msea.2008.01.047
    [34]
    Yang Y, Li XM, Chen SW, et al. Effects of pre-notches on the self-organization behaviors of shear bands in aluminum alloy. Materials Science and Engineering:A, 2010, 527(20): 5084-5091 doi: 10.1016/j.msea.2010.04.079
    [35]
    Yang Y, Li DH, Zheng HG, et al. Self-organization behaviors of shear bands in 7075 T73 and annealed aluminum alloy. Materials Science and Engineering: A, 2009, 527(1-2): 344-354 doi: 10.1016/j.msea.2009.08.032
    [36]
    Liu MT, Guo ZL, Fan C, et al. Modeling spontaneous shear bands evolution in thick-walled cylinders subjected to external High-strain-rate loading. International Journal of Solids and Structures, 2016, 97-98: 336-354
    [37]
    杨涛, 刘龙飞, 杨智程等. 表面粗糙度对TC4钛合金柱壳剪切带形成的影响. 力学学报, 2021, 53(3): 813-822 (Liu Longfei, Zhou Qiang. Effect of surface roughness on the formation of shear band in Ti-6 Al-4 V alloy cylindrical shell. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 813-822 (in Chinese)
    [38]
    Lovinger Z, Rittel D, Rosenberg Z. An experimental study on spontaneous adiabatic shear band formation in electro-magnetically collapsing cylinders. Journal of the Mechanics and Physics of Solids, 2015, 79: 134-156 doi: 10.1016/j.jmps.2015.04.007
    [39]
    Jia D, Ramesh KT, Ma E. Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Materialia, 2003, 51: 3495-3509 doi: 10.1016/S1359-6454(03)00169-1
    [40]
    Meyers MA, Wang SL. An improved method for shock consolidation of powders. Acta Metallurgica, 1988, 36(4): 925-936 doi: 10.1016/0001-6160(88)90147-2
    [41]
    Kennedy JE. The gurney model of explosive output for driving metal//Zukas JA, Walters WP, eds. Explosive Effects and Applications. New York: Springer, 1998: 221-257
    [42]
    Grady DE, Kipp ME. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. Journal of the Mechanics and Physics of Solids, 1987, 35(1): 95-119 doi: 10.1016/0022-5096(87)90030-5
  • Related Articles

    [1]Yang Tao, Liu Longfei, Yang Zhicheng, Hu Li, Lu Liwei, Shi Xiankun. EFFECT OF SURFACE ROUGHNESS ON THE FORMATION OF SHEAR BAND IN Ti-6Al-4V ALLOY CYLINDRICAL SHELL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 813-822. DOI: 10.6052/0459-1879-20-433
    [2]Ievgen Mochalin, Lin Jingwen, Cai Jiancheng, Volodymyr Brazhenko, E Shiju. MODELLING AND CALCULATION OF THE TURBULENT BOUNDARY LAYER ON A ROTATING CYLINDER SURFACE WITH STRONG SUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1323-1333. DOI: 10.6052/0459-1879-20-032
    [3]Liu Jun, Gao Fuping. HYSTERESIS IN VORTEX-INDUCED VIBRATIONS OF A NEAR-WALL CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1630-1640. DOI: 10.6052/0459-1879-19-293
    [4]Zhao Junhai, Jiang Zhilin, Zhang Changguang, Cao Xueye. UNIFIED SOLUTIONS OF LIMIT INTERNAL PRESSURE FOR THICK-WALLED CYLINDER WITH DIFFERENT BEHAVIOUR IN TENSION AND COMPRESSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 836-847. DOI: 10.6052/0459-1879-17-006
    [5]Jun Liu Gao Lin Jianbo Li. Wave interaction with double-cylinder structurer with arc-shaped porous outer wall[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 174-178. DOI: 10.6052/0459-1879-2012-1-lxxb2011-200
    [6]Yang Lidong Dong Junhua Gao Bingjun. Ratcheting study of pressurized lateral nozzle of cylinder[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 523-532. DOI: 10.6052/0459-1879-2011-3-lxxb2009-698
    [7]Youquan Yin. he analytical solutions of thick-walled cylinder of softening material and its stability[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 56-64. DOI: 10.6052/0459-1879-2010-1-2008-440
    [8]Bin Ji, Wanji Chen, Jie Zhao. Elastoplastic finite element analysis of shear band with couple stress theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 192-199. DOI: 10.6052/0459-1879-2009-2-2007-416

Catalog

    Article Metrics

    Article views (623) PDF downloads (49) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return