EI、Scopus 收录
中文核心期刊
Lü Jialin, Niu Jiangchuan, Shen Yongjun, Yang Shaopu. Vibration control of linear boring bar by dynamic vibration absorber combined with nonlinear energy sink. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3124-3133. DOI: 10.6052/0459-1879-21-475
Citation: Lü Jialin, Niu Jiangchuan, Shen Yongjun, Yang Shaopu. Vibration control of linear boring bar by dynamic vibration absorber combined with nonlinear energy sink. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3124-3133. DOI: 10.6052/0459-1879-21-475

VIBRATION CONTROL OF LINEAR BORING BAR BY DYNAMIC VIBRATION ABSORBER COMBINED WITH NONLINEAR ENERGY SINK

  • Received Date: September 14, 2021
  • Accepted Date: October 15, 2021
  • Available Online: October 16, 2021
  • The vibration control of linear boring bar system attached with linear dynamic vibration absorber and nonlinear energy sink under external harmonic excitation is studied. By ignoring the nonlinear factors in the boring bar system, the three degree of freedom motion equation of the boring bar system attached with linear dynamic vibration absorber and nonlinear energy sink is established, and the forced vibration of the boring bar system with combined dynamic vibration absorber is studied. The approximate analytical solution of boring bar system with combined dynamic vibration absorber is obtained by means of averaging method. The accuracy of the approximate analytical solution is verified by comparing with the numerical solution, and they are in good agreement with each other. By using the approximate analytical solution, the effects of linear dynamic vibration absorber and nonlinear energy sink parameters on the vibration suppression performance of boring bar are analyzed in detail. Based on the analysis of the influence law of the combined dynamic vibration absorber on linear boring bar system, the parameters of the combined dynamic vibration absorber with given mass are optimized, in which the linear dynamic vibration absorber parameters are optimized by using the approximate analytical solution of H optimization method, and the damping of nonlinear energy sink is optimized by the approximate analytical solution of the system. The analysis results show that the combination of linear dynamic vibration absorber and nonlinear energy sink can effectively suppress the vibration of linear boring bar system, moreover, the linear boring bar system can obtain better vibration attenuation effect by using the combined dynamic vibration absorber with optimized parameters. By adding nonlinear energy sink can not only improve the vibration suppression effect of linear dynamic vibration absorber, but also improve the robustness of vibration control system. The analysis results can provide a reference for the design of built-in damping boring bar.
  • [1]
    郭丽静. 孔加工技术综述. 机械工程与自动化, 2011(2): 212-214 (Guo Lijing. A review of hole machining technology. Mechanical Engineering and Automation, 2011(2): 212-214 (in Chinese) doi: 10.3969/j.issn.1672-6413.2011.02.084
    [2]
    刘立佳, 刘献礼, 许成阳等. 减振镗杆振动控制研究综述. 哈尔滨理工大学学报, 2014, 19(2): 12-18 (Liu Lijia, Liu Xianli, Xu Chengyang, et al. Review on vibration control of boring bar for vibration reduction. Journal of Harbin University of Science and Technology, 2014, 19(2): 12-18 (in Chinese) doi: 10.3969/j.issn.1007-2683.2014.02.003
    [3]
    张月星, 李强. 浅谈火炮身管加工工艺. 装备制造技术, 2014(2): 241-242 (Zhang Yuexing, Li Qiang. Discussion on gun barrel Processing Technology. Equipment Manufacturing Technology, 2014(2): 241-242 (in Chinese) doi: 10.3969/j.issn.1672-545X.2014.02.089
    [4]
    王军, 王加春, 吴凤和等. 复合结构黏弹性阻尼减振砂轮接杆的研究. 机械工程学报, 2014, 50(15): 192-197 (Wang Jun, Wang Jiachun, Wu Fenghe, et al. Research on coupling rod of composite viscoelastic damping grinding wheel. Journal of Mechanical Engineering, 2014, 50(15): 192-197 (in Chinese) doi: 10.3901/JME.2014.15.192
    [5]
    Xu CY, Wang Y, Wu S, et al. Study on dynamic properties of damping boring bar with large ratio of length to diameter. Materials Science Forum, 2014, 800-801: 489-494 doi: 10.4028/www.scientific.net/MSF.800-801.489
    [6]
    章宗诚. 日本三菱公司新型高阻尼抗振FSCL型镗杆. 工具技术, 2000(5): 40 (Zhang Zongcheng. New type high damping anti vibration FSCL boring bar of Mitsubishi Company of Japan. Tool Technology, 2000(5): 40 (in Chinese) doi: 10.3969/j.issn.1000-7008.2000.05.016
    [7]
    刘立佳. 变刚度—约束阻尼减振镗杆设计及特性研究. [博士论文]. 哈尔滨: 哈尔滨理工大学, 2016

    Liu Lijia. Design and characteristics of boring bar with variable stiffness and constrained Damping. [PhD Thesis]. Harbin: Harbin University of Science and Technology, 2016 (in Chinese))
    [8]
    侯学元, 韩淑华, 张超等. 二重动力吸振的车床镗削系统减振装置的设计. 机械科学与技术, 2020, 39(4): 561-566 (Hou Xueyuan, Han Shuhua, Zhang Chao, et al. Design of vibration reduction device for double dynamic vibration absorption of lathe boring system. Mechanical Science and Technology, 2020, 39(4): 561-566 (in Chinese)
    [9]
    Mei D, Kong T, Shih AJ, et al. Magnetorheological fluid-controlled boring bar for chatter suppression. Journal of Materials Processing Technology, 2008, 209(4): 1861-1870
    [10]
    Li L, Sun B, Hua H. Analysis of the vibration characteristics of a boring bar with a variable stiffness dynamic vibration absorber. Shock and Vibration, 2019, 2019: 1-13
    [11]
    Hayati S, Shahrokhi M, Hedayati A. Development of a frictionally damped boring bar for chatter suppression in boring process. International Journal of Advanced Manufacturing Technology, 2021, 113(9): 2761-2778
    [12]
    Yadav A, Talaviya D, Bansal A, et al. Design of chatter-resistant damped boring bars using a receptance coupling approach. Journal of Manufacturing and Materials Processing, 2020, 4(2): 53 doi: 10.3390/jmmp4020053
    [13]
    Song Q, Shi J, Liu Z, et al. Boring bar with constrained layer damper for improving process stability. The International Journal of Advanced Manufacturing Technology, 2016, 83(9-12): 1951-1966 doi: 10.1007/s00170-015-7670-5
    [14]
    侯学元, 韩淑华, 郭如飞等. 变频调谐的动力减振镗杆的设计与仿真实验. 组合机床与自动化加工技术, 2020, 6: 5-9 (Hou Xueyuan, Han Shuhua, Guo Rufei, et al. Design and simulation experiment of dynamic vibration damping boring bar tuned by frequency conversion. Modular Machine Tool and Automatic Machining Technology, 2020, 6: 5-9 (in Chinese)
    [15]
    刘强, 刘献礼, 吴石等. 变质量动力吸振器减振镗杆减振性能研究. 哈尔滨理工大学学报, 2018, 23(5): 25-29 (Liu Qiang, Liu Xianli, Wu Shi, et al. Research on vibration reduction performance of boring bar for variable mass dynamic vibration absorber. Journal of Harbin University of Science and Technology, 2018, 23(5): 25-29 (in Chinese)
    [16]
    孔天荣. 磁流变自抑振智能镗杆的理论与方法研究. [博士论文]. 杭州: 浙江大学, 2009

    Kong Tianrong. Research on theory and method of magnetorheological self-suppressing intelligent boringbar. [PhD Thesis]. Hangzhou: Zhejiang University, 2009 (in Chinese)
    [17]
    赵勋, 章伟, 李屏等. 钢结硬质合金抗振镗杆设计及应用研究. 硬质合金, 2018, 35(1): 44-49 (Zhao Xun, Zhang Wei, Li Ping, et al. Design and application of steel bonded carbide vibration-resistant boring bar. Carbide, 2018, 35(1): 44-49 (in Chinese)
    [18]
    谭骏, 方辉, 赵庆军等. 内置式减振镗杆的试制和减振性能分析. 现代制造工程, 2019, 3: 86-91 (Tan Jun, Fang Hui, Zhao Qingjun, et al. Trial manufacture and vibration damping performance analysis of built-in vibration damping boring bar. Modern Manufacturing Engineering, 2019, 3: 86-91 (in Chinese)
    [19]
    张红卫, 吴伏家. 一种新型抗振镗杆的结构设计. 机械工程与自动化, 2007, 5: 75-76+79 (Zhang Hongwei, Wu Fujia. Structure design of a new type of vibration-resistant boring bar. Mechanical Engineering and Automation, 2007, 5: 75-76+79 (in Chinese) doi: 10.3969/j.issn.1672-6413.2007.05.028
    [20]
    Nucera F, McFarland DM, Bergman LA, et al. Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Computational results. Journal of Sound and Vibration, 2010, 329(15): 2973-2994 doi: 10.1016/j.jsv.2010.01.020
    [21]
    Maria O, Giorgio B, Francesco LI, et al. Nonlinear energy sink and Eurocode 8: An optimal design approach based on elastic response spectra. Engineering Structures, 2020, 221: 111020 doi: 10.1016/j.engstruct.2020.111020
    [22]
    Vakakis AF. Inducing passive nonlinear energy sinks in vibrating systems. ASME Journal of Vibration and Acoustics, 2001, 123(3): 324-332 doi: 10.1115/1.1368883
    [23]
    鲁正, 王自欣, 吕西林. 非线性能量阱技术研究综述. 振动与冲击, 2020, 39(4): 1-16+26 (Lu Zheng, Wang Zixin, Lü Xilin. Review of nonlinear energy sink technology. Journal of Vibration and Shock, 2020, 39(4): 1-16+26 (in Chinese)
    [24]
    Gourdon E, Alexander NA, Taylor CA, et al. Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results. Journal of Sound and Vibration, 2007, 300(3): 522-551
    [25]
    Zhang Y, Kong X, Yue C, et al. Dynamic analysis of 1-dof and 2-dof nonlinear energy sink with geometrically nonlinear damping and combined stiffness. Nonlinear Dynamics, 2021, 105: 167-190 doi: 10.1007/s11071-021-06615-9
    [26]
    Cao Y, Yao H, Li Q, et al. Vibration mitigation and dynamics of a rotor-blade system with an attached nonlinear energy sink. International Journal of Non-Linear Mechanics, 2020, 127: 103614 doi: 10.1016/j.ijnonlinmec.2020.103614
    [27]
    Etienne G, Sébastien S, Guilhem M, et al. Chatter control in turning process with a nonlinear energy sink. Advanced Materials Research, 2013, 698: 89-98 doi: 10.4028/www.scientific.net/AMR.698.89
    [28]
    Ahmadabadi ZN, Khadem SE. Self-excited oscillations attenuation of drill-string system using nonlinear energy sink. Proceedings of the Institution of Mechanical Engineers, Part C. Journal of Mechanical Engineering Science, 2013, 227(2): 230-245 doi: 10.1177/0954406212447226
    [29]
    Giuseppe H, Francesco R. The tuned bistable nonlinear energy sink. Nonlinear Dynamics, 2017, 89(1): 179-196 doi: 10.1007/s11071-017-3444-y
    [30]
    Ding H, Chen LQ. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dynamics, 2020, 100: 3061-3107 doi: 10.1007/s11071-020-05724-1
    [31]
    时成龙, 张纪刚, 程赟. 非线性能量阱减振的研究进展. 地震工程与工程振动, 2021, 41(2): 162-174 (Shi Chenglong, Zhang Jigang, Cheng Yun. Research progress of nonlinear energy sink vibration reduction. Earthquake Engineering and Engineering Vibration, 2021, 41(2): 162-174 (in Chinese)
    [32]
    李晨, 陈国一, 方勃等. 杠杆型并联非线性能量阱的振动控制. 振动与冲击, 2021, 40(15): 54-64 (Li Chen, Chen Guoyi, Fang Bo, et al. Vibration control for lever-type parallel nonlinear energy trap. Journal of Vibration and Shock, 2021, 40(15): 54-64 (in Chinese)
    [33]
    王国旭, 丁虎, 陈立群. 简谐激励下双弹簧非线性能量阱的优化. 动力学与控制学报, 2021, DOI: 10.6052/1672-6553-2021-022

    Wang Guoxu, Ding Hu, Chen Liqun. Optimization of a nonlinear energy sink with double spring and harmonic excitation, Journal of Dynamics and Control, 2021, DOI: 10.6052/1672-6553-2021-022 (in Chinese)
    [34]
    刘良坤, 潘兆东, 谭平等. 非线性能量阱系统受基底简谐激励的参数优化分析. 振动与冲击, 2019, 38(22): 36-43 (Liu Liangkun, Pan Zhaodong, Tan Ping, et al. Parameter optimization analysis of a nonlinear energy sink system under base harmonic excitation. Journal of Vibration and Shock, 2019, 38(22): 36-43 (in Chinese)
    [35]
    石建飞, 苟向锋, 张艳龙. 两自由度减振镗杆系统的安全盆侵蚀与分岔. 振动与冲击, 2018, 37(22): 238-244 (Shi Jianfei, Gou Xiangfeng, Zhang Yanlong. Erosion and bifurcation of safety basin in two-degree-of-freedom vibration damping boring bar system. Journal of Vibration and Shock, 2018, 37(22): 238-244 (in Chinese)
    [36]
    Hou J, Niu J, Shen Y, et al. Dynamic analysis and vibration control of two-degree-of-freedom boring bar with fractional-order model of maanetorheological fluid. Journal of Vibration and Control, 2021, DOI: 10.1177/10775463211023368
    [37]
    陈杰, 孙维光, 郑伟等. 基于动力吸振器理论的车下设备悬挂H和H2优化. 铁道科学与工程学报, 2020, 17(9): 2363-2371 (Chen Jie, Sun Weiguang, Zheng Wei, et al. Optimization of undervehicle suspension H∞ and H2 based on dynamic vibration absorber theory. Journal of Railway Science and Engineering, 2020, 17(9): 2363-2371 (in Chinese)
    [38]
    Asami T, Nishihara O, Baz AM. Analytical solutions to H∞ and H2 optimization of dynamic vibration absorbers attached to damped linear systems. ASME Journal of Vibration and Acoustics, 2002, 124(2): 284-295
  • Related Articles

    [1]Wang Yi, Li Xulong, Wei Sha, Wang Jun, Ding Hu, Chen Liqun. DESIGN AND APPLICATION OF NONLINEAR ENERGY SINK IN VIBRATION CONTROL OF A HALF-VEHICLE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 720-729. DOI: 10.6052/0459-1879-24-537
    [2]Nie Xiaochun, Lin Xiqi, Fu Junjie, Wang Lingzhi, Yan Zhitao. RESEARCH ON THE VIBRATION SUPPRESSION PERFORMANCE OF A SERIES TWO DEGREE OF FREEDOM NONLINEAR ENERGY SINK UNDER PULSE EXCITATION WITH DAMPING NONLINEARITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1458-1474. DOI: 10.6052/0459-1879-23-496
    [3]Ma Kai, Du Jingtao, Liu Yang, Chen Ximing. A COMPARATIVE STUDY ON THE TORSIONAL VIBRATION ATTENUATION OF CLOSED-LOOP INTERNAL COMBUSTION ENGINE SHAFTING USING TUNED MASS DAMPER AND NONLINEAR ENERGY SINK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 236-246. DOI: 10.6052/0459-1879-23-285
    [4]Li Meng, Li Sunbiao, Ding Hu. ANALYSIS OF DAMPING EFFICIENCY OF NONLINEAR ENERGY SINK CELL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2614-2623. DOI: 10.6052/0459-1879-23-284
    [5]Zhang Yunfa, Kong Xianren. ANALYSIS ON VIBRATION SUPPRESSION RESPONSE OF NONLINEAR ENERGY SINK WITH COMBINED NONLINEAR DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 972-981. DOI: 10.6052/0459-1879-22-563
    [6]Fan Shutong, Shen Yongjun. RESEARCH ON A VISCOELASTIC NONLINEAR ENERGY SINK UNDER HARMONIC EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2567-2576. DOI: 10.6052/0459-1879-22-193
    [7]Zhang Wanjie, Niu Jiangchuan, Shen Yongjun, Yang Shaopu, Wang Li. DYNAMICAL ANALYSIS ON A KIND OF SEMI-ACTIVE VIBRATION ISOLATION SYSTEMS WITH DAMPING CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1743-1754. DOI: 10.6052/0459-1879-20-147
    [8]Xing Zikang, Shen Yongjun, Li Xianghong. PERFORMANCE ANALYSIS OF GROUNDED THREE-ELEMENT DYNAMIC VIBRATION ABSORBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1466-1475. DOI: 10.6052/0459-1879-19-154
    [9]Qi Feng. Approximate theory and analytical solution for functionally graded piezoelectric rectangular plates[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 670-681. DOI: 10.6052/0459-1879-2010-4-lxxb2009-064
    [10]Approximate Analytical Solution Of The Piecewise-Smooth Nonlinear Systems Of Multi-Degrees-Of-Freedom ------The Self-Excited Vibration Of The Chinese Cultural Relic Dragon Washbasin[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(3): 373-378. DOI: 10.6052/0459-1879-2004-3-2003-103
  • Cited by

    Periodical cited type(2)

    1. 王瑄,孔辰,韩云霄,李佳,常军涛. 引入物理约束的航空发动机燃烧室温度场预测模型. 推进技术. 2024(12): 64-78 .
    2. 罗仁宇,李奇志,祖公博,黄云进,杨耿超,姚清河. 基于卷积神经网络的超分辨率格子Boltzmann方法研究. 力学学报. 2024(12): 3612-3624 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (806) PDF downloads (183) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return