EI、Scopus 收录
中文核心期刊
Du Xin, Xiong Qilin, Zhou Liucheng, Kan Qianhua, Jiang Suihe, Zhang Xu. Microplastic deformation of cocrfemnni high-entropy alloy under laser shock: a molecular dynamics simulation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3331-3340. DOI: 10.6052/0459-1879-21-468
Citation: Du Xin, Xiong Qilin, Zhou Liucheng, Kan Qianhua, Jiang Suihe, Zhang Xu. Microplastic deformation of cocrfemnni high-entropy alloy under laser shock: a molecular dynamics simulation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3331-3340. DOI: 10.6052/0459-1879-21-468

MICROPLASTIC DEFORMATION OF CoCrFeMnNi HIGH-ENTROPY ALLOY UNDER LASER SHOCK: A MOLECULAR DYNAMICS SIMULATION

  • Received Date: September 11, 2021
  • Accepted Date: November 04, 2021
  • Available Online: November 05, 2021
  • Laser shock processing (LSP) can effectively improve the fatigue life of materials, which is widely used in the aerospace field. CoCrFeMnNi high-entropy alloy is a classic high-entropy alloy system, so the studies on microstructure evolutions and shock wave responses after LSP play an important role in the application of this material in the aerospace field. The molecular dynamics method is used to simulate the shock of CoCrFeMnNi high-entropy alloy, and it is obtained that the elastoplastic two-wave separation phenomenon is related to the shock direction, showing obvious orientation-dependence. It is found that there is no two-wave separation structure when shocking along the [100] direction, and an intermediate phase will be produced in the process of plastic deformation. But, when shocking along the [110] and [111] directions, a two-wave separation structure is produced, and there are a large number of stacking faults and disordered structures in the impacted area, the high dislocation density is an important reason for the disordered structure. The phenomenon of two-wave separation is related to the number of active slip systems, the Hugoniot elastic limit and the critical impact velocity for plastic deformation when impacted along different orientations are related to the Schmid factor of the active slip systems. In addition, a gradient dislocation density structure is induced due to the shocking loading, the dislocation density first increases and then decreases along with the shock depth, and a greater dislocation density is produced when shocked in the close-packed direction. After the shock, there is residual compressive stress at the both ends of the model, the residual tensile stress is at the core of the model, and the magnitude of residual stress has obvious orientation dependence. Finally, compared with pure Ni with the same size and orientation, it is found that there are more disordered structures in CoCrFeMnNi high-entropy alloy than pure Ni during the impact process due to the lattice distortion effect.
  • [1]
    贾唯. 激光冲击强化金属镍的微观形变实验与模拟研究. [硕士论文]. 江苏: 江苏大学, 2018

    Jia Wei. Experiment and simulation research micro-deformation of metal nickel treated by laser shock peening. [Master Thesis]. Jiangsu: Jiangsu University, 2018 (in Chinese)
    [2]
    鲁金忠. 激光冲击强化铝合金力学性能及微观塑性变形机理研究. [博士论文]. 江苏: 江苏大学, 2010

    Lu Jinzhong. Investigation of laser shock processing on the mechanical properties and micro-plastic deformation mechanism of LY2 aluminum alloy. [PhD Thesis]. Jiangsu: Jiangsu University, 2010 (in Chinese)
    [3]
    何卫锋, 李翔, 聂祥樊等. 钛合金薄壁构件激光冲击残余应力稳定性研究. 金属学报, 2018, 54(3): 411-418 (He Weifeng, Li Xiang, Ni Xiangfan et al. Study on stability of residual stress induced by laser shock processing in titanium alloy thin-components. Acta Metallurgica Sinica, 2018, 54(3): 411-418 (in Chinese) doi: 10.11900/0412.1961.2017.00135
    [4]
    汪军, 李民, 汪静雪等. 激光冲击强化对304不锈钢疲劳寿命的影响. 中国激光, 2019, 46(1): 0102003 (Wang Jun, Li Min, Wang Jingxue, et al. Effects of laser shock processing on fatigue life of 304 stainless steel. Chinese Journal of Lasers, 2019, 46(1): 0102003 (in Chinese) doi: 10.3788/CJL201946.0102003
    [5]
    罗开玉, 周阳, 鲁金忠等. 激光冲击强化对316 L不锈钢熔覆层微观结构和性能的影响. 中国激光, 2017, 44(4): 0402005 (Luo Kaiyu, Zou Yang, Lu Jinzhong, et al. Influence of laser shock peening on microstructure and property of cladding layer of 316 l stainless steel. Chinese Journal of Lasers, 2017, 44(4): 0402005 (in Chinese) doi: 10.3788/CJL201744.0402005
    [6]
    Yeh JW, Lin SJ, Chin TS, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgicl and Materials Transactions A, 2004, 35(8): 2533-2536 doi: 10.1007/s11661-006-0234-4
    [7]
    Klimova MV, Semenyuk AO, Shaysultanov DG, et al. Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys. Journal of Alloys and Compounds, 2019, 811: 152000
    [8]
    Qiu J, Jin T, Xiao GS, et al. Effects of pre-compression on the hardness of CoCrFeNiMn high entropy alloy based an asymmetrical yield criterion. Journal of Alloys and Compounds, 2019, 802: 93-102 doi: 10.1016/j.jallcom.2019.06.159
    [9]
    Shang XL, Wang ZJ, He F, et al. The intrinsic mechanism of corrosion resistance for FCC high entropy alloys. Science China-Technological Sciences, 2018, 61(2): 189-196 doi: 10.1007/s11431-017-9114-1
    [10]
    吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化. 金属学报, 2018, 54(3): 1553-1566 (Lü Zhaoping, Lei Zhifeng, Huang Hailong, et al. Deformation behavior and toughening ofhigh-entropy alloys. Acta Metallurgica Sinica, 2018, 54(3): 1553-1566 (in Chinese)
    [11]
    李建国, 黄瑞瑞, 张倩等. 高熵合金的力学性能及变形行为研究进展. 力学学报, 2020, 52(2): 333-359 (Li Jianguo, Huang Ruirui, Zhang Qian, et al. Mechnical properties and behaviors of high entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 333-359 (in Chinese)
    [12]
    Cantor B, Chang IT, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A, 2004, 375-377: 23-218
    [13]
    Gali A, George EP. Tensile properties of high- and medium-entropy alloys. Intermetallics, 2013, 39: 74-78 doi: 10.1016/j.intermet.2013.03.018
    [14]
    Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345(6201): 1153-1158 doi: 10.1126/science.1254581
    [15]
    Naeem M, He HY, Zhang F, et al. Cooperative deformation in high-entropy alloys at ultralow temperatures. Science Advances, 2020, 6(13): eaax4002 doi: 10.1126/sciadv.aax4002
    [16]
    Huang TD, Jiang L, Zhang CL, et al. Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Science China, 2018, 61(1): 117-123 doi: 10.1007/s11431-017-9134-6
    [17]
    Peng J, Li L, Li F, et al. The predicted rate-dependent deformation behaviour and multistage strain hardening in a model heterostructured body-centered cubic high entropy alloy. International Journal of Plasticity, 2021, 145: 103073
    [18]
    Meng XK, Zhou JZ, Huang S, et al. Properties of a laser shock wave in Al-Cu alloy under elevated temperatures: A molecular dynamics simulation study. Materials, 2017, 10: 73 doi: 10.3390/ma10010073
    [19]
    Xiong QL, Shimada T, Kitamura T, et al. Selective excitation of two-wave structured depending on crystal orientation under shock compression. Science China, 2020, 63(11): 114611
    [20]
    陈亚洲, 周留成, 何卫锋等. 冲击加载下纯钛微观塑性变形的分子动力学模拟. 中国激光, 2016, 43(8): 0802014 (Chen Yazhou, Zhou Liucheng, He Weifeng et al. Molecular dynamics simulation of plastic deformation of pure titanium under shock loading. Chinese Journal of Lasers, 2016, 43(8): 0802014 (in Chinese) doi: 10.3788/CJL201643.0802014
    [21]
    徐高峰, 周建忠, 孟宪凯等. 深冷环境下激光冲击波在单晶钛中的传播及位错扩展特性. 中国激光, 2017, 44(6): 0602005 (Xu Gaofeng, Zhou Jianzhong, Meng Xiankai, et al. Propagation and dislocation development properties of laser shock waves in monocrystalline titanium under cryogenic environment. Chinese Journal of Lasers, 2017, 44(6): 0602005 (in Chinese) doi: 10.3788/CJL201744.0602005
    [22]
    Germann TC, Holian BL, Lomdahl PS, et al. Orientation dependence in molecular dynamics simulations of shocked single crystals. Physical Review Letters, 2000, 84(23): 5351-5354 doi: 10.1103/PhysRevLett.84.5351
    [23]
    Bringa EM, Caro A, Wang YM, et al. Ultrahigh strength in nanocrystalline materials under shock loading. Science, 2005, 309(16): 1838-1841
    [24]
    Plimpton SJ. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117: 1-19 doi: 10.1006/jcph.1995.1039
    [25]
    Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 2009, 18: 015012
    [26]
    Faken D, Jónsson H. Systematic analysis of local atomic structure combined with 3D computer graphics. Computational Materials Science, 1994, 2(2): 279-286 doi: 10.1016/0927-0256(94)90109-0
    [27]
    Stukowski A, Bulatov VV, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering, 2012, 20(1): 085007
    [28]
    Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Computer Physics Communications, 2015, 197: 212-219 doi: 10.1016/j.cpc.2015.07.012
    [29]
    Choi WM, Jo YH, Sohn SS, et al. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. Npj Computational Materials, 2018, 4(1): 1 doi: 10.1038/s41524-017-0060-9
    [30]
    Du X, Lu XC, Suang SY, et al. Cyclic plasticity of CoCrFeMnNi high-entropy alloy (HEA): A molecular dynamics simulation. International Journal of Applied Mechanics, 2021, 12(1): 2150006
    [31]
    Qi YM, Chen XH, Feng ML. Molecular dynamics-based analysis of the effect of temperature and strain rate on deformation of nanocrystalline CoCrFeMnNi high-entropy alloy. Applied Physics A-Materials Science & Processing, 2020, 126(7): 529
    [32]
    Shuang SY, Lu SJ, Zhang B, et al. Effects of high entropy and twin boundary on the nanoindentation of CoCrNiFeMn high-entropy alloy: A molecular dynamics study. Computational Materials Science, 2021, 195(1): 110495
    [33]
    胡远啸, 双思垚, 王冰等. CrMnFeCoNi高熵合金纳米晶温度相关的拉伸行为研究. 固体力学学报, 2020, 41(2): 109-117 (Hu Yuanxiao, Shuang Siyao, Wang Bing, et al. Temperature-dependent tensile behavior of nanocrystalline CrMnFeCoNi high-entropy alloy. Acta Mechanica Solida Sinica, 2020, 41(2): 109-117 (in Chinese)
    [34]
    Liu SY, Lu SJ, Wei YJ. The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys. Extreme Mechanics Letters, 2017, 11: 84-88 doi: 10.1016/j.eml.2016.10.007
    [35]
    Zhang Q, Huang RR, Zhang X, et al. Deformation mechanisms and remarkable strain hardening in single-crystalline high-entropy-alloy micropillars/nanopillars. Nano Letters, 2021, 21: 3671-3679 doi: 10.1021/acs.nanolett.1c00444
    [36]
    刘海, 李启楷, 何远航. 高速冲击压缩梯恩梯的分子动力学模拟. 力学学报, 2015, 47(1): 174-179 (Liu Hai, Li Qikai, He Yuanhang. Molecular dynamics simulations of high velocity shock compressed TNT. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 174-179 (in Chinese) doi: 10.6052/0459-1879-14-141
    [37]
    Xiong QL, Shimada T, Kitamura T, et al. Atomic investigation of effects of coating and confinement layer on laser shock peening. Optics and Laser Technology, 2020, 131(10): 106409
    [38]
    Chen YZ, Zhou LC, He WF, et al. Molecular dynamics simulation of the plastic behavior anisotropy of shock-compressed monocrystal nickle. European Physical Journal B, 2017, 90(1): 10-16 doi: 10.1140/epjb/e2016-70618-0
    [39]
    王志龙, 罗开玉, 刘月等. 超高应变率力学效应下多晶铜的微观塑性变形分子动力学模拟. 中国激光, 2015, 42(7): 0703005 (Wang Zhilong, Luo Kaiyu, Liu Yue, et al. Molecular dynamics simulation of plastic deformation of polycrystalline Cu under mechanical effect with ultrahigh strain rate. Chinese Journal of Lasers, 2015, 42(7): 0703005 (in Chinese) doi: 10.3788/CJL201542.0703005
    [40]
    Xie ZC, Jian WR, Xu SZ, et al. Role of local chemical fluctuations in the shock dynamics of medium entropy alloy CoCrNi. Acta Materialia, 2021, 13: 117380
    [41]
    Xiong QL, Kitamura T, Li ZH, et al. Transient phase transitions in single-crystal coppers under ultrafast lasers induced shock compression: A molecular dynamics study. Journal of Applied Physics, 2019, 125(19): 194302 doi: 10.1063/1.5088371
    [42]
    Zhang BW, Zhou LC, SunY, et al. Molecular dynamics simulation of crack growth in pure titanium under uniaxial tension. Molecular Simulation, 2018, 44(15): 1252-1260 doi: 10.1080/08927022.2018.1485150
    [43]
    Shi XS, Feng XT, Zhang BW. Research on microstructure deformation mechanism of crack tip in titanium under tension along different orientations. Molecular Simulation, 2020, 46(6): 440-447 doi: 10.1080/08927022.2020.1720915
    [44]
    李晓雁. 纳米晶Al薄膜Bauschinger效应的分子动力学模拟. 金属学报, 2014, 50(2): 219-225 (Li Xiaoyan. Atomistic simulations of bauschinger effect in nanocrystalline aluminum thin films. Acta Metallurgica Sinica, 2014, 50(2): 219-225 (in Chinese)
    [45]
    Li W, Chen HT, Huang WY, et al. Effect of laser shock peening on high cycle fatigue properties of aluminized AISI 321 stainless steel. International Journal of Fatigue, 2021, 147(15): 106180
    [46]
    Li WB, Yuan FP, Wu XL. Atomistic tensile deformation mechanisms of Fe with gradient nano-grained structure. AIP Advances, 2015, 5(8): 087120 doi: 10.1063/1.4928448
    [47]
    熊健, 魏德安, 陆宋江等. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟. 金属学报, 2019, 55(11): 1477-1486 (Xiong Jian, Wei Dean, Lu Songjiang, et al. A three-dimensional discrete dislocation dynamics simulation on micropillar compression of single crystal copper with dislocation density gradient. Acta Metallurgica Sinica, 2019, 55(11): 1477-1486 (in Chinese) doi: 10.11900/0412.1961.2019.00025
    [48]
    Zhang X, Xiong J, Fan HD, et al. Microplasticity and yielding in crystals with heterogeneous dislocation distribution. Modelling and Simulation in Materials Science and Engineering, 2019, 27(7): 074003 doi: 10.1088/1361-651X/ab2851
    [49]
    Pan QS, Zhang LX, Feng R, et al. Gradient-cell–structured high-entropy alloy with exceptional strength and ductility. Science, 2021, 374: 6570 doi: 10.1126/science.abj8114
    [50]
    Lu XC, Zhao JF, Wang ZW, et al. Crystal plasticity finite element analysis of gradient nanostructured TWIP steel. International Journal of Plasticity, 2020, 130: 102703 doi: 10.1016/j.ijplas.2020.102703
    [51]
    Zhao JF, Pan XL, Li J, et al. Laser shock peened Ti-6 Al-4 V alloy: Experiments and modeling. International Journal of Mechanical Sciences, 2022, 213: 106874 doi: 10.1016/j.ijmecsci.2021.106874
    [52]
    Lu XC, Zhang X, Shi MX, et al. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper. international Journal of Plasticity, 2019, 113: 52-73 doi: 10.1016/j.ijplas.2018.09.007
    [53]
    Zhao JF, Kan QH, Zhou LC, et al. Deformation mechanisms based constitutive modelling and strength-ductility mapping of gradient nano-grained materials. Materials Science and Engineering, 2019, 742: 400-408 doi: 10.1016/j.msea.2018.10.096
    [54]
    李毅. 梯度结构金属材料研究进展. 中国材料进展, 2016, 35(9): 658-665 (Li Yi. Research progress on gradient metallic materials. Materials China, 2016, 35(9): 658-665 (in Chinese)
    [55]
    Li XT, Zhao JF, Zhou X, et al. Revealing the inhibition mechanism of grain size gradient on crack growth in gradient nano-grained materials. International Journal of Solids and Structures, 2019, 172-173: 1-9 doi: 10.1016/j.ijsolstr.2019.05.023
  • Related Articles

    [1]Li Xiaojun, Zhang Xun, Xing Haojie. A TRANSMITTING BOUNDARY WITH TIME-VARYING COMPUTATIONAL ARTIFICIAL WAVE VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2924-2935. DOI: 10.6052/0459-1879-24-178
    [2]Xing Haojie, Li Xiaojun, Liu Aiwen, Li Hongjing, Zhou Zhenghua, Chen Su. EXTRAPOLATION-TYPE ARTIFICIAL BOUNDARY CONDITIONS IN THE NUMERICAL SIMULATION OF WAVE MOTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1480-1495. DOI: 10.6052/0459-1879-20-408
    [3]Wu Lihua, Zhao Mi, Du Xiuli. A TIME-DOMAIN ARTIFICIAL BOUNDARY CONDITION FOR VECTOR WAVE IN MULTILAYERED WAVEGUIDE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 554-567. DOI: 10.6052/0459-1879-20-213
    [4]Li Shutao, Liu Jingbo, Bao Xin. IMPROVEMENT OF EXPLICIT ALGORITHMS STABILITY WITH VISCO-ELASTIC ARTIFICIAL BOUNDARY ELEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1838-1849. DOI: 10.6052/0459-1879-20-224
    [5]Liu Jingbo, Tan Hui, Bao Xin, Wang Dongyang, Li Shutao. The seismic wave input method for soil-structure dynamic interaction analysis based on the substructure of artificial boundaries[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 32-43. DOI: 10.6052/0459-1879-17-336
    [6]Liu Jingbo, Bao Xin, Tan Hui, Wang Jianping, Guo Dong. DYNAMICAL ARTIFICIAL BOUNDARY FOR FLUID MEDIUM IN WAVE MOTION PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1418-1427. DOI: 10.6052/0459-1879-17-199
    [7]Zhang Xiaolong, Li Xiaojun, Chen Guoxing, Zhou Zhenghua. AN IMPROVED METHOD OF THE CALCULATION OF EQUIVALENT NODAL FORCES IN VISCOUS-ELASTIC ARTIFICIAL BOUNDARY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1126-1135. DOI: 10.6052/0459-1879-16-070
    [8]Xiuli Du, Mi Zhao. A novel high-order spring-dashpot-mass boundary for cylindrical-symmetry wave motions in infinite domain[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 207-215. DOI: 10.6052/0459-1879-2009-2-2007-404
    [9]A stress artificial boundary in FEA for near-field wave problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 49-56. DOI: 10.6052/0459-1879-2006-1-2004-442
    [10]A METHOD FOR THE STABILITY ANALYSIS OF LOCAL ARTIFICIAL BOUNDARIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(3): 376-380. DOI: 10.6052/0459-1879-1996-3-1995-344
  • Cited by

    Periodical cited type(7)

    1. 吴绍恒,陈少林,刘鸿泉,孙晓颖. 地下水位对核电结构地震反应的影响分析. 振动工程学报. 2024(04): 556-564 .
    2. 陈少林,王俊豪,周国良. 海上浮式核电平台地震响应分区分析方法. 力学学报. 2024(10): 3084-3098 . 本站查看
    3. Lv Hao,Chen Shaolin. Seismic response characteristics of nuclear island structure at generic soil and rock sites. Earthquake Engineering and Engineering Vibration. 2023(03): 667-688 .
    4. 刘鸿泉,陈少林,孙晓颖,吴绍恒. 基于神经网络的核电厂设备易损性分析. 力学学报. 2022(07): 2059-2070 . 本站查看
    5. 孙杰,陈少林,王波,陈宝魁,王东升. 海水-海床-桥梁系统地震响应分析分区并行方法研究. 中国科学:技术科学. 2022(10): 1495-1508 .
    6. 尹训强,付忠余. 考虑SSI效应的核电厂直立翼墙与排水沉管交叉体系静动力响应分析. 震灾防御技术. 2022(04): 666-673 .
    7. 王立安,赵建昌,杨华中. 饱和多孔地基与矩形板动力相互作用的非轴对称混合边值问题. 力学学报. 2020(04): 1189-1198 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (2110) PDF downloads (287) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return