Citation: | Mi Sien, Liu Xiaoming, Wei Yueguang. A transition method from discrete simulation to elastic FEA of continuous media. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3080-3096. DOI: 10.6052/0459-1879-21-449 |
[1] |
Reddy SR, Yoshida S, Bhattacharjee T, et al. Nanostructuring with structural-compositional dual heterogeneities enhances strength-ductility synergy in eutectic high entropy alloy. Scientific Reports, 2019, 9(1): 1-9
|
[2] |
Ma E, Wu XL. Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy. Nature Communications, 2019, 10(1): 1-10 doi: 10.1038/s41467-018-07882-8
|
[3] |
Barkia B, Aubry P, Haghi-Ashtiani P, et al. On the origin of the high tensile strength and ductility of additively manufactured 316L stainless steel: Multiscale investigation. Journal of Materials Science & Technology, 2020, 41: 209-218
|
[4] |
Wu XL, Zhu YT, Lu K. Ductility and strain hardening in gradient and lamellar structured materials. Scripta Materialia, 2020, 186: 321-325 doi: 10.1016/j.scriptamat.2020.05.025
|
[5] |
Wood MA, Cusentino MA, Wirth BD, et al. Data-driven material models for atomistic simulation. Physical Review B, 2019, 99(18): 184305 doi: 10.1103/PhysRevB.99.184305
|
[6] |
Sahraei AA, Mokarizadeh AH, Foroutan M, et al. Atomistic simulation of interfacial properties and damage mechanism in graphene nanoplatelet/epoxy composites. Computational Materials Science, 2020, 184: 109888 doi: 10.1016/j.commatsci.2020.109888
|
[7] |
Song SC, Wang Y, Wang Y, et al. Atomistic simulation on the twin boundary migration in Mg under shear deformation. Materials, 2019, 12(19): 3129 doi: 10.3390/ma12193129
|
[8] |
Zhu JQ, Liu X, Yang QS. Atomistic simulation of the nanoindentation behavior of graphene/Al multilayered nanocomposites. Materials Science and Engineering, 2019, 531(1): 012055
|
[9] |
Du JF, Meng J, Li XY, et al. Multiscale atomistic simulation of metal nanoparticles under working conditions. Nanoscale Advances, 2019, 1(7): 2478-2484 doi: 10.1039/C9NA00196D
|
[10] |
Knap J, Ortiz M. An analysis of the quasicontinuum method. Journal of the Mechanics and Physics of Solids, 2001, 49(9): 1899-1923 doi: 10.1016/S0022-5096(01)00034-5
|
[11] |
Chen JR, Ming PB. Ghost force influence of a quasicontinuum method in two dimension. Journal of Computational Mathematics, 2012, 30: 657-683
|
[12] |
Wu B, Liang LH, Ma HS, et al. A trans-scale model for size effects and intergranular fracture in nanocrystalline and ultra-fine polycrystalline metals. Computational Materials Science, 2012, 57: 2-7 doi: 10.1016/j.commatsci.2011.03.045
|
[13] |
Song JR, Wei YG. A method to determine material length scale parameters in elastic strain gradient theory. Journal of Applied Mechanics, 2020, 87(3): 031010 doi: 10.1115/1.4045523
|
[14] |
Irving JH, Kirkwood JG. The statistical mechanical theory of transport processes. IV The equations of hydrodynamics. The Journal of Chemical Physics, 1950, 18(6): 817-829
|
[15] |
Hardy RJ. Formulas for determining local properties in molecular-dynamics simulations: Shock waves. The Journal of Chemical Physics, 1982, 76(1): 622-628 doi: 10.1063/1.442714
|
[16] |
Hardy RJ, Root S, Swanson DR. Continuum properties from molecular simulations. American Institute of Physics, 2002, 620(1): 363-366
|
[17] |
Zimmerman JA, WebbIII EB, Hoyt JJ, et al. Calculation of stress in atomistic simulation. Modelling and Simulation in Materials Science and Engineering, 2004, 12(4): S319-S332 doi: 10.1088/0965-0393/12/4/S03
|
[18] |
Tsai DH. The virial theorem and stress calculation in molecular dynamics. The Journal of Chemical Physics, 1979, 70(3): 1375-1382 doi: 10.1063/1.437577
|
[19] |
Lutsko JF. Stress and elastic constants in anisotropic solids: molecular dynamics techniques. Journal of Applied Physics, 1988, 64(3): 1152-1154 doi: 10.1063/1.341877
|
[20] |
Zhou M. A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2003, 459(2037): 2347-2392
|
[21] |
Liu B, Qiu XM. How to compute the atomic stress objectively? Journal of Computational and Theoretical Nanoscience, 2009, 6(5): 1081-1089 doi: 10.1166/jctn.2009.1148
|
[22] |
Falk ML, Langer JS. Dynamics of viscoplastic deformation in amorphous solids. Physical Review E, 1998, 57(6): 7192-7205 doi: 10.1103/PhysRevE.57.7192
|
[23] |
Shimizu F, Ogata S, Li J. Theory of shear banding in metallic glasses and molecular dynamics calculations. Materials Transactions, 2007, 48(11): 2923-2927 doi: 10.2320/matertrans.MJ200769
|
[24] |
Gullett PM, Horstemeyer MF, Baskes MI, et al. A deformation gradient tensor and strain tensors for atomistic simulations. Modelling and Simulation in Materials Science and Engineering, 2007, 16(1): 015001
|
[25] |
Mott PH, Argon AS, Suter UW. The atomic strain tensor. Journal of Computational Physics, 1992, 101(1): 140-150 doi: 10.1016/0021-9991(92)90048-4
|
[26] |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1-19 doi: 10.1006/jcph.1995.1039
|
[27] |
Purja Pun GP, Mishin Y. Development of an interatomic potential for the Ni-Al system. Philosophical Magazine, 2009, 89(34-36): 3245-3267 doi: 10.1080/14786430903258184
|
[28] |
Ma E, Thompson CV, Clevenger LA. Nucleation and growth during reactions in multilayer Al/Ni films: The early stage of Al3Ni formation. Journal of Applied Physics, 1991, 69(4): 2211-2218 doi: 10.1063/1.348722
|
[29] |
Lopez GA, Sommadossi S, Gust W, et al. Phase characterization of diffusion soldered Ni/Al/Ni interconnections. Interface Science, 2002, 10(1): 13-19 doi: 10.1023/A:1015172710411
|
[30] |
Rogachev AS, Vadchenko SG, Baras F, et al. Structure evolution and reaction mechanism in the Ni/Al reactive multilayer nanofoils. Acta Materialia, 2014, 66: 86-96 doi: 10.1016/j.actamat.2013.11.045
|
[31] |
Gurtin ME, Murdoch AI. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 1975, 57(4): 291-323 doi: 10.1007/BF00261375
|
[32] |
Wang Y, Liu ZK, Chen LQ. Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations. Acta Materialia, 2004, 52(9): 2665-2671 doi: 10.1016/j.actamat.2004.02.014
|
[33] |
王帅, 姚寅, 杨亚政等. 双层金属界面能密度的尺寸效应. 力学学报, 2017, 49(5): 978-984 (Wang Shuai, Yao Yin, Yang Yazheng, et al. Size effect of the interface energy density in bi-nano-scaled-metallic plates. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 978-984 (in Chinese) doi: 10.6052/0459-1879-17-142
|
[34] |
Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical review B, 1989, 39(8): 5566-5568 doi: 10.1103/PhysRevB.39.5566
|
[35] |
Xu S, Wan Q, Sha ZD, et al. Molecular dynamics simulations of nano-indentation and wear of the γTi-Al alloy. Computational Materials Science, 2015, 110: 247-253 doi: 10.1016/j.commatsci.2015.08.045
|
[36] |
李启楷, 张跃, 褚武扬. 纳米压痕变形过程的分子动力学模拟. 金属学报, 2004, 40(12): 1238-1242 (Li Qikai, Zhang Yue, Chu Wuyang. Molecular dynamics simulation of plastic deformation during nanoindentation. Acta Metallurgica Sinica, 2004, 40(12): 1238-1242 (in Chinese) doi: 10.3321/j.issn:0412-1961.2004.12.002
|