EI、Scopus 收录
中文核心期刊
Zhang Ying, Wang Wei, Cao Junyi. An accurate modelling method of magnetic force in multi-stable energy harvesting system. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2984-2995. DOI: 10.6052/0459-1879-21-446
Citation: Zhang Ying, Wang Wei, Cao Junyi. An accurate modelling method of magnetic force in multi-stable energy harvesting system. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2984-2995. DOI: 10.6052/0459-1879-21-446

AN ACCURATE MODELLING METHOD OF MAGNETIC FORCE IN MULTI-STABLE ENERGY HARVESTING SYSTEM

  • Received Date: September 12, 2021
  • Accepted Date: October 15, 2021
  • Available Online: October 16, 2021
  • Chaos and bifurcation make the nonlinear dynamic response sensitive to structural parameters for multi-stable energy harvesting system, so that it is difficult to design the nonlinear characteristics directly from structural parameters. In order to acquire the relationship between the nonlinear restoring force and the structural parameters quantitatively, an accurate modelling method of magnetic force for multi-stable energy harvesting system is proposed. The relative distance and the rotational angle between the end magnet and the external magnet are calculated to determine the relative spatial position between magnets, and the magnetic charge theory is adopted to deduce the model of the nonlinear magnetic force in multi-stable energy harvesting system. Then, the experimental platform is carried out to measure the nonlinear magnetic force under different structural parameters for multi-stable energy harvesting system. The comparative analysis shows that the magnetic force calculated by the proposed method is in a better agreement with the experimental result than other methods. The effectiveness of the proposed method for magnetic force prediction is verified by the peak values errors of 4.3% and 6.49% for bi-stable energy harvesting system and tri-stable energy harvesting system respectively. In addition, the influence mechanism of structural parameters on potential wells is investigated to obtain the steady states critical positions of multi-stable energy harvesting system based on the proposed method, and also the influence of different structural parameters on voltage response is analysed for bi-stable and tri-stable energy harvesting systems. After parameters optimization, the maximal RMS voltage response for bi-stable system is 10.22 V in case of the vertical distance 34 mm, while for tri-stable system the maximal RMS voltage response is 12.7 V in case of the vertical distance 28 mm and horizontal distance 8 mm. This research is expected to provide the guidance for the output performance optimization of multi-stable energy harvesting system.
  • [1]
    Yi Z, Yang B, Zhang W, et al. Batteryless tire pressure real-time monitoring system driven by an ultralow frequency piezoelectric rotational energy harvester. IEEE Transactions on Industrial Electronics, 2020, 68(4): 3192-3201
    [2]
    Qian J, Kim DS, Lee DW. On-vehicle triboelectric nanogenerator enabled self-powered sensor for tire pressure monitoring. Nano Energy, 2018, 49: 126-136 doi: 10.1016/j.nanoen.2018.04.022
    [3]
    Wang Y, Yang Z, Li P, et al. Energy harvesting for jet engine monitoring. Nano Energy, 2020, 75: 104853 doi: 10.1016/j.nanoen.2020.104853
    [4]
    Wu Y, Zhang H, Zuo L. Thermoelectric energy harvesting for the gas turbine sensing and monitoring system. Energy Conversion and Management, 2018, 157: 215-223 doi: 10.1016/j.enconman.2017.12.009
    [5]
    Zhang Z, Du K, Chen X, et al. An air-cushion triboelectric nanogenerator integrated with stretchable electrode for human-motion energy harvesting and monitoring. Nano Energy, 2018, 53: 108-115 doi: 10.1016/j.nanoen.2018.08.011
    [6]
    Park JH, Wu C, Sung S, et al. Ingenious use of natural triboelectrification on the human body for versatile applications in walking energy harvesting and body action monitoring. Nano Energy, 2019, 57: 872-878 doi: 10.1016/j.nanoen.2019.01.001
    [7]
    Ji B, Chen Z, Chen S, et al. Joint optimization for ambient backscatter communication system with energy harvesting for IoT. Mechanical Systems and Signal Processing, 2020, 135: 106412 doi: 10.1016/j.ymssp.2019.106412
    [8]
    Fan K, Tan Q, Zhang Y, et al. A monostable piezoelectric energy harvester for broadband low-level excitations. Applied Physics Letters, 2018, 112(12): 123901 doi: 10.1063/1.5022599
    [9]
    杨涛. 多稳态能量收集系统的非线性动力学行为及应用研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2019

    Yang Tao. Study on nonlinear dynamics behavior and application of multi-stable energy harvesting systems. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese))
    [10]
    Zhou Z, Qin W, Zhu P, et al. Harvesting more energy from variable-speed wind by a multi-stable configuration with vortex-induced vibration and galloping. Energy, 2021, 237: 121551 doi: 10.1016/j.energy.2021.121551
    [11]
    李海涛, 丁虎, 陈立群等. 三稳态能量收集系统的同宿分岔及混沌动力学分析. 应用数学和力学, 2020, 41(12): 1311-1322 (Li Haitao, Ding Hu, Chen Liqun, et al. Homoclinic bifurcations and chaos thresholds of tristable piezoelectric vibration energy harvesting systems. Applied Mathematics and Mechanics, 2020, 41(12): 1311-1322 (in Chinese)
    [12]
    Wang J, Geng L, Zhou S, et al. Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mechanica Sinica, 2020, 36(3): 592-605 doi: 10.1007/s10409-020-00928-5
    [13]
    Sun S, Leng Y, Su X, et al. Performance of a novel dual-magnet tri-stable piezoelectric energy harvester subjected to random excitation. Energy Conversion and Management, 2021, 239: 114246 doi: 10.1016/j.enconman.2021.114246
    [14]
    Erturk A, Hoffmann J, Inman DJ. A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 2009, 94(25): 254102 doi: 10.1063/1.3159815
    [15]
    Moon FC, Holmes PJ. A magnetoelastic strange attractor. Journal of Sound and Vibration, 1979, 65(2): 275-296 doi: 10.1016/0022-460X(79)90520-0
    [16]
    Zhou S, Cao J, Inman DJ, et al. Broadband tristable energy harvester: modeling and experiment verification. Applied Energy, 2014, 133: 33-39 doi: 10.1016/j.apenergy.2014.07.077
    [17]
    Zhou S, Cao J, Erturk A, et al. Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Applied Physics Letters, 2013, 102(17): 173901 doi: 10.1063/1.4803445
    [18]
    Huang D, Zhou S, Litak G. Theoretical analysis of multi-stable energy harvesters with high-order stiffness terms. Communications in Nonlinear Science and Numerical Simulation, 2019, 69: 270-286 doi: 10.1016/j.cnsns.2018.09.025
    [19]
    Cao J, Zhou S, Wang W, et al. Influence of potential well depth on nonlinear tristable energy harvesting. Applied Physics Letters, 2015, 106(17): 173903 doi: 10.1063/1.4919532
    [20]
    Upadrashta D, Yang Y. Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction. Smart Materials and Structures, 2015, 24(4): 045042 doi: 10.1088/0964-1726/24/4/045042
    [21]
    Ferrari M, Ferrari V, Guizzetti M, et al. Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sensors and Actuators A:Physical, 2010, 162(2): 425-431 doi: 10.1016/j.sna.2010.05.022
    [22]
    周生喜, 曹军义, Erturk Alper等. 压电磁耦合振动能量俘获系统的非线性模型研究. 西安交通大学学报, 2014, 48(1): 106-111

    Zhou Shengxi, Cao Junyi, Erturk Alper, et al. Nonlinear model for piezoelectric energy harvester with magnetic coupling, Journal of Xi’an Jiaotong University, 2014, 48(1): 106-111 (in Chinese)
    [23]
    Abdelmoula H, Zimmerman S, Abdelkefi A. Accurate modeling, comparative analysis, and performance enhancement of broadband piezoelectric energy harvesters with single and dual magnetic forces. International Journal of Non-Linear Mechanics, 2017, 95: 355-363 doi: 10.1016/j.ijnonlinmec.2017.07.008
    [24]
    Yung KW, Landecker PB, Villani DD. An analytic solution for the force between two magnetic dipoles. Magnetic and Electrical Separation, 1970, 9: 079537
    [25]
    Li H, Qin W, Lan C, et al. Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Materials and Structures, 2015, 25(1): 015001
    [26]
    Zhao LC, Zou HX, Yan G, et al. A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester. Applied Energy, 2019, 239: 735-746 doi: 10.1016/j.apenergy.2019.02.006
    [27]
    谭江平, 王光庆, 鞠洋等. 多稳态压电振动能量采集器的非线性动力学特性及其实验研究. 振动工程学报, 2021, 34(4): 765-774 (Tan Jiangping, Wang Guangqing, Ju Yang, et al. Nonlinear dynamic characteristics and experimental validation of a multi-stable piezoelectric vibration energy harvester. Journal of Vibration Engineering, 2021, 34(4): 765-774 (in Chinese)
    [28]
    Zou HX, Li M, Zhao LC, et al. A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting. Energy, 2021, 217: 119429 doi: 10.1016/j.energy.2020.119429
    [29]
    Wang G, Wu H, Liao WH, et al. A modified magnetic force model and experimental validation of a tri-stable piezoelectric energy harvester. Journal of Intelligent Material Systems and Structures, 2020, 31(7): 967-979 doi: 10.1177/1045389X20905975
    [30]
    Wang G, Zhao Z, Liao WH, et al. Characteristics of a tri-stable piezoelectric vibration energy harvester by considering geometric nonlinearity and gravitation effects. Mechanical Systems and Signal Processing, 2020, 138: 106571 doi: 10.1016/j.ymssp.2019.106571
    [31]
    Agashe JS, Arnold DP. A study of scaling and geometry effects on the forces between cuboidal and cylindrical magnets using analytical force solutions. Journal of Physics D:Applied Physics, 2008, 41(10): 105001 doi: 10.1088/0022-3727/41/10/105001
    [32]
    Leng Y, Tan D, Liu J, et al. Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation. Journal of Sound and Vibration, 2017, 406: 146-160 doi: 10.1016/j.jsv.2017.06.020
    [33]
    Stanton SC, McGehee CC, Mann BP. Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D:Nonlinear Phenomena, 2010, 239(10): 640-653 doi: 10.1016/j.physd.2010.01.019
    [34]
    Erturk A. Assumed-modes modeling of piezoelectric energy harvesters: Euler–Bernoulli, Rayleigh, and Timoshenko models with axial deformations. Computers & Structures, 2012, 106: 214-227
    [35]
    Charpentier JF, Lemarquand G. Optimal design of cylindrical air-gap synchronous permanent magnet couplings. IEEE Transactions on Magnetics, 1999, 35(2): 1037-1046 doi: 10.1109/20.748851
    [36]
    Friswell MI, Ali SF, Bilgen O, et al. Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. Journal of Intelligent Material Systems and Structures, 2012, 23(13): 1505-1521 doi: 10.1177/1045389X12455722
  • Related Articles

    [1]Yu Jiangfei, Zhou Zixuan, Peng Jiangpeng, Tang Tao, Yang Wangfeng, Yang Yixin, Wang Hongbo. OPTIMIZATION DESIGN OF COMBUSTION CHAMBER CONFIGURATION PARAMETERS FOR SCRAMJET ENGINES BASED ON SURROGATE MODELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3359-3370. DOI: 10.6052/0459-1879-24-297
    [2]Zhang Jiangtao, Tan Yuanqiang, Ji Caiyuan, Xiao Xiangwu, Jiang Shengqiang. RESEARCH ON THE EFFECTS OF ROLLER-SPREADING PARAMETERS FOR NYLON POWDER SPREADABILITY IN ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2416-2426. DOI: 10.6052/0459-1879-21-240
    [3]Sui Peng, Shen Yongjun, Yang Shaopu. PARAMETERS OPTIMIZATION OF A DYNAMIC VIBRATION ABSORBER WITH INERTER AND GROUNDED STIFFNESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1412-1422. DOI: 10.6052/0459-1879-21-058
    [4]Wu Mengzhen, Liu Yang, Xu Xianghong. SENSITIVITY ANALYSIS AND OPTIMIZATION ON PARAMETERS OF HIGH SPEEDPANTOGRAPH-CATENARY SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 75-83. DOI: 10.6052/0459-1879-20-207
    [5]Xing Zikang, Shen Yongjun, Li Xianghong. PERFORMANCE ANALYSIS OF GROUNDED THREE-ELEMENT DYNAMIC VIBRATION ABSORBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1466-1475. DOI: 10.6052/0459-1879-19-154
    [6]Zhaoyang Xing, Yongjun Shen, Haijun Xing, Shaopu Yang. PARAMETERS OPTIMIZATION OF A DYNAMIC VIBRATION ABSORBER WITH AMPLIFYING MECHANISM AND NEGATIVE STIFFNESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 894-903. DOI: 10.6052/0459-1879-18-375
    [7]Zhang Zhen, Li Jiachun. NEW SOURCE/SINK MODEL, FLOW SIMULATION AND PARAMETER OPTIMIZATION OF THE REGENERATOR FOR HIGH FREQUENCY PULSE TUBE REFRIGERATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 421-430. DOI: 10.6052/0459-1879-16-287
    [8]Peng Haibo, Shen Yongjun, Yang Shaopu. PARAMETERS OPTIMIZATION OF A NEW TYPE OF DYNAMIC VIBRATION ABSORBER WITH NEGATIVE STIFFNESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 320-327. DOI: 10.6052/0459-1879-14-275
    [9]Wu Zheng, Guo Mingmin, Xu Qian. STUDY ON OPTIMIZATION OF TRAFFIC FLOW VELOCITY-DENSITY MODELS FOR URBAN FREEWAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 709-717. DOI: 10.6052/0459-1879-11-377
    [10]Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086
  • Cited by

    Periodical cited type(3)

    1. 伍芷娴,王锁,李支援,梅旭涛,周生喜. 旋转环境下的磁耦合双稳态能量俘获机理研究. 振动工程学报. 2024(06): 964-975 .
    2. 谭栋国,池实民,欧旭,周加喜,王凯. 非线性摩擦纳米发电俘能技术的若干进展. 力学学报. 2024(09): 2495-2510 . 本站查看
    3. 张晓宇,张旭辉. 矿用压电俘能器建模与俘能特性研究. 力学学报. 2023(10): 2239-2251 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (961) PDF downloads (206) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return