Citation: | Meng Ying, Ding Hu, Chen Liqun. Vibration analysis of a piezoelectric circular plate energy harvester considering a proof mass. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2950-2960. DOI: 10.6052/0459-1879-21-441 |
[1] |
Jiang LM, Yang Y, Chen RM, et al. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator. Nano Energy, 2019: 216-224
|
[2] |
刘婷, 赵程, 张刚华等. 应用于能量采集领域压电材料的研究进展. 机械工程材料, 2020, 44(6): 82-87+92 (Liu Ting, Zhao Cheng, Zhang Ganghua, et al. Research progress on piezoelectric materials in the field of energy harvesting. Materials for Mechanical Engineering, 2020, 44(6): 82-87+92 (in Chinese)
|
[3] |
魏胜, 胡泓. 基于压电振动的人体能量采集技术研究综述. 机械与电子, 2018, 36(10): 67-72 (Wei Sheng, Hu Hong. A review of human motion energy harvesting based on piezoelectric vibration. Machinery and electronics, 2018, 36(10): 67-72 (in Chinese) doi: 10.3969/j.issn.1001-2257.2018.10.015
|
[4] |
解锋. 基于压电换能器的心脏能量采集装置制备与实验研究. [博士论文]. 上海: 中国人民解放军海军军医大学, 2021
Xie Feng. A research on preparation and application of the heart piezoelectric transducer in animal experiments. [PhD Thesis]. Shanghai: the PLA Naval Medical University, 2021 (in Chinese)
|
[5] |
Gardonio P, Zilletti M. Vibration energy harvesting from an array of flexible stalks exposed to airflow: A theoretical study. Smart Materials and Structures, 2016, 25(3): 035014 doi: 10.1088/0964-1726/25/3/035014
|
[6] |
Yang ZB, Zhou SX, Zu J, et al. High-performance piezoelectric energy harvesters and their applications. Joule, 2018, 2(4): 642-697 doi: 10.1016/j.joule.2018.03.011
|
[7] |
Elvin NG, Elvin AA. An experimentally validated electromagnetic energy harvester. Journal of Sound and Vibration, 2011, 330(10): 2314-2324 doi: 10.1016/j.jsv.2010.11.024
|
[8] |
Le CP, Halvorsen E, Sorasen O, et al. Microscale electrostatic energy harvester using internal impacts. Journal of Intelligent Material Systems and Structures, 2012, 23(13): 1409-1421 doi: 10.1177/1045389X12436739
|
[9] |
刘仲琳, 冷永刚, 刘进军等. 双稳悬臂梁电磁式振动能量采集研究. 振动与冲击, 2019, 38(23): 126-133+151 (Liu Zhonglin, Leng yonggang, Liu Jinjun, et al. Electromagnetic type vibration energy harvester based on bi-stable cantilever beam. Journal of Vibration and Shock, 2019, 38(23): 126-133+151 (in Chinese)
|
[10] |
王光庆, 崔素娟, 武海强等. 多稳态压电振动能量采集器的动力学模型及其特性分析. 振动工程学报, 2019, 32(2): 252-263 (Wang Guangqing, Cui Sujuan, Wu Haiqiang, et al. Dynamical model and characteristics of a multi-stable piezoelectric vibration energy harvester. Journal of Vibration Engineering, 2019, 32(2): 252-263 (in Chinese)
|
[11] |
李魁, 杨智春, 谷迎松等. 变势能阱双稳态气动弹性能量收集的性能增强研究. 航空学报, 2020, 41(9): 136-147 (Li Kui, Yang Zhichun, Gu Yingsong, et al. Performance enhancement of variable-potential-well bi-stable aeroelasticity energy harvesting. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 136-147 (in Chinese)
|
[12] |
张智娟, 杨瑞, 郑龙飞等. 悬臂梁双晶压电能量采集装置实验研究. 科学技术与工程, 2020, 20(35): 14518-14522 (Zhang Zhijuan, Yang Rui, Zheng Longfei, et al. Experimental exploration of double crystal piezoelectric energy collection device on cantilever beam. Science Technology and Engineering, 2020, 20(35): 14518-14522 (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.35.025
|
[13] |
Yuan TC, Yang J, Chen LQ. Nonlinear characteristic of a circular composite plate energy harvester: Experiments and simulations. Nonlinear Dynamics, 2017, 90(4): 1-12
|
[14] |
Lu Q. Modeling of functionally graded circular energy harvesters due to flexoelectricity. Applied Mathematical Modelling, 2019: 587-590
|
[15] |
Kim S, Clark WW, Wang QM. Piezoelectric energy harvesting with a clamped circular plate: Analysis. Journal of Intelligent Material Systems and Structures, 2005, 16(10): 847-854 doi: 10.1177/1045389X05054044
|
[16] |
Kim S. Piezoelectric energy harvesting using a clamped circular plate: experimental study. Journal of Intelligent Material Systems and Structures, 2005, 16(10): 855-863 doi: 10.1177/1045389X05054043
|
[17] |
Mehdipour I, Honarvar F. Finding the optimum polarization boundary line for enhancing the performance of clamped piezoelectric circular plates. Applied Mathematical Modelling, 2021: 1141-1153
|
[18] |
Yuan JB, Xie T, Chen WS, et al. Performance of a drum transducer for scavenging vibration energy. Journal of Intelligent Material Systems and Structures, 2009, 20(14): 1771-1777 doi: 10.1177/1045389X09343477
|
[19] |
Kan JW, Qiu JH, Tang KH, et al. Modeling and simulation of piezoelectric composite diaphragms for energy harvesting. International Journal of Applied Electromagnetics and Mechanics, 2009, 30(1-2): 95-106 doi: 10.3233/JAE-2009-1039
|
[20] |
Shahri MB, Moeenfard H. Energy harvesting from unimorph piezoelectric circular plates under random acoustic and base acceleration excitations. Mechanical Systems and Signal Processing, 2019, 130: 502-523
|
[21] |
Chen XR, Yang TQ, Wang W, et al. Vibration energy harvesting with a clamped piezoelectric circular diaphragm. Ceramics International, 2012, 38(1): S271-S274 doi: 10.1016/j.ceramint.2011.07.001
|
[22] |
Palosaari J, Leinonen M, Juuti J, et al. Piezoelectric circular diaphragm with mechanically induced pre-stress for energy harvesting. Smart Materials and Structures, 2014, 23(8): 085025 doi: 10.1088/0964-1726/23/8/085025
|
[23] |
Liu YZ, Yang TQ, Shu FM. Optimization of energy harvesting based on the uniform deformation of piezoelectric ceramic. Functional Materials Letters, 2016, 9(5): 1650069 doi: 10.1142/S1793604716500697
|
[24] |
Shu FM, Yang TQ, Liu YZ. Enhancement of power output by a new stress-applied mode on circular piezoelectric energy harvester. AIP Advances, 2018, 8(4): 045102 doi: 10.1063/1.5016200
|
[25] |
Han Y, Li YB, Yang YYW, et al. Improvement of uneven charge distribution on piezoelectric circular diaphragm with notched-substrate. AIP Advances, 2020, 10(4): 045330 doi: 10.1063/1.5141890
|
[26] |
Solovyev AN, Duong LV. Optimization for the harvesting structure of the piezoelectric bimorph energy harvesters circular plate by reduced order finite element analysis. International Journal of Applied Mechanics, 2016, 8(3): 1650029
|
[27] |
Jiang SN, Hu YT. Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(7): 1463-1469 doi: 10.1109/TUFFC.2007.407
|
[28] |
Yang YYW, Wang S, Stein P, et al. Vibration-based energy harvesting with a clamped piezoelectric circular diaphragm: analysis and identification of optimal structural parameters. Smart Materials and Structures, 2017, 26(4): 045011 doi: 10.1088/1361-665X/aa5fda
|
[29] |
Yang YYW, Li YB, Guo YQ, et al. Improved vibration-based energy harvesting by annular mass configuration of piezoelectric circular diaphragms. Smart materials and structures, 2018, 27(3): 3680-3684
|
[30] |
Xu CQ, Li YB, Yang TQ. Optimization of non-uniform deformation on piezoelectric circular diaphragm energy harvester with a ring-shaped ceramic disk. Micromachines, 2020, 11(11): 963 doi: 10.3390/mi11110963
|
[31] |
Erturk A, Inman DJ. Piezoelectric Energy Harvesting. New York: Wiley, 2011
|
[32] |
Nayfeh AH, Pai PF. Linear and Nonlinear Structural Mechanics. New York: Wiley, 2004
|
[33] |
刘延柱, 陈立群, 陈文良. 振动力学(第3版). 北京: 高等教育出版社, 2019
Liu Yanzhu, Chen Liqun, Chen Wenliang. Mechanics of Vibration. (3rd Edn.) Beijing: Higher Education Press, 2019 (in Chinese)
|
[34] |
曹志远. 板壳振动理论. 北京: 中国铁道出版社, 1989
Cao Zhiyuan. Theory of Vibration of Plates and Shells. Beijing: China Railway Press, 1989 (in Chinese)
|
[1] | Wei Fankai, Yi Chuanshuai, Wu Huaping, Lu Yebo, Sun Quan. SIMULATION ON THE ELECTRICAL AND MECHANICAL FATIGUE DAMAGE BEHAVIOR OF CONDUCTIVE HYDROGEL INTERFACE UNDER CYCLIC LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1711-1720. DOI: 10.6052/0459-1879-23-162 |
[2] | Wang Monan, Jiang Guodong, Liu Fengjie. MULTI-SCALE MODELING AND SIMULATION OF SKELETAL MUSCLE BIOMECHANICAL PROPERTIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 509-531. DOI: 10.6052/0459-1879-22-496 |
[3] | Zhang Yuanrui, Zhu Yudong, Zheng Zhijun, Yu Jilin. A COUPLING ANALYSIS MODEL OF CLAMPED MONOLITHIC BEAM IMPACTED BY FOAM PROJECTILES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2161-2172. DOI: 10.6052/0459-1879-22-223 |
[4] | Yan Jun, Hu Haitao, Su Qi, Yin Yuanchao, Wu Shanghua, Lu Hailong, Lu Qingzhen. PROSPECT AND PROGRESSION OF KEY MECHANICAL PROBLEMS IN MARINE CABLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 846-861. DOI: 10.6052/0459-1879-22-113 |
[5] | Lei Chen Fenghua Zhou Tiegang Tang. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 861-870. DOI: 10.6052/0459-1879-2011-5-lxxb2010-675 |
[6] | Yun Xu, Jun Chen, Xijun Wei. A new adaptive finite element method for multiscale dynamic simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 722-729. DOI: 10.6052/0459-1879-2009-5-2008-024 |
[7] | Guiping Zhao, Tianjian Lu. Dynamic response of cellular metallic sandwich plates under impact loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 194-206. DOI: 10.6052/0459-1879-2008-2-2007-129 |
[8] | Yan Zhao, Zhonghua Shen, Jian Lu, Xiaowu Ni. Finite element simulation of leaky lamb wave at fluid-solid interfaces excited thermoelastically by pulsed laser[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 35-39. DOI: 10.6052/0459-1879-2008-1-2006-065 |
[9] | Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198 |
[10] | Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946 |
1. |
杨舟,冯青松,邓杰,张凌,贺辉. 基于高斯展开法的钢轨-双声学黑洞压电梁俘能特性研究. 振动工程学报. 2025(05): 1002-1015 .
![]() | |
2. |
张欣宇,肖玉善,吴振,任晓辉. 压电智能功能梯度夹芯结构高精度理论模型与主动控制. 力学学报. 2024(01): 130-140 .
![]() | |
3. |
胡帅钊,聂国才,张忠伟,邵明玉,马驰骋. 附加液体质量的压电俘能器俘能特性研究. 压电与声光. 2024(04): 609-616 .
![]() | |
4. |
梅杰,宋钢,李立杰,陈定方,李杨. 压电材料平面Ⅰ型裂纹模拟仿真分析. 起重运输机械. 2023(17): 58-65 .
![]() | |
5. |
张伟,刘爽,毛佳佳,黎绍佳,曹东兴. 磁耦合式双稳态宽频压电俘能器的设计和俘能特性. 力学学报. 2022(04): 1102-1112 .
![]() | |
6. |
薛坚,牛牧青,张文勇,陈立群. 二元复合材料板的自由振动:半解析法. 力学学报. 2022(07): 2041-2049 .
![]() | |
7. |
曹彩芹,陈晶博,李东波. 考虑电场梯度的挠曲电纳米板弯曲性能分析. 力学学报. 2022(11): 3088-3098 .
![]() |