Citation: | Huang Chenyang, Chen Jiawei, Zhu Yanyan, Lian Yanping. Powder scale multiphysics numerical modelling of laser directed energy deposition. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3240-3251. DOI: 10.6052/0459-1879-21-420 |
[1] |
陈嘉伟, 熊飞宇, 黄辰阳等. 金属增材制造数值模拟. 中国科学: 物理学 力学 天文学, 2020, 50(9): 104-128 (Chen Jiawei, Xiong Feiyu, Huang Chenyang, et al. Numerical simulation on metallic additive manufacturing. Scientia Sinica Physica,Mechanica &Astronomica, 2020, 50(9): 104-128 (in Chinese)
|
[2] |
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题. 航空学报, 2014, 35(10): 2690-2698 (Wang Huaming. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698 (in Chinese)
|
[3] |
Tan H, Shang W, Zhang F, et al. Process mechanisms based on powder flow spatial distribution in direct metal deposition. Journal of Materials Processing Technology, 2018, 254: 361-372 doi: 10.1016/j.jmatprotec.2017.11.026
|
[4] |
Gharbi M, Peyre P, Gorny C, et al. Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti–6Al–4V alloy. Journal of Materials Processing Technology, 2013, 213(5): 791-800 doi: 10.1016/j.jmatprotec.2012.11.015
|
[5] |
Thakkar D, Sahasrabudhe H. Investigating microstructure and defects evolution in laser deposited single-walled Ti6Al4V structures with sharp and non-sharp features. Journal of Manufacturing Processes, 2020, 56: 928-940 doi: 10.1016/j.jmapro.2020.05.052
|
[6] |
Wang X, He X, Wang T, et al. Internal pores in DED Ti-6.5Al-2Zr-Mo-V alloy and their influence on crack initiation and fatigue life in the mid-life regime. Additive Manufacturing, 2019, 28: 373-393 doi: 10.1016/j.addma.2019.05.007
|
[7] |
Lin J. Concentration mode of the powder stream in coaxial laser cladding. Optics & Laser Technology, 1999, 31(3): 251-257
|
[8] |
Balu P, Leggett P, Kovacevic R. Parametric study on a coaxial multi-material powder flow in laser-based powder deposition process. Journal of Materials Processing Technology, 2012, 212(7): 1598-1610 doi: 10.1016/j.jmatprotec.2012.02.020
|
[9] |
Zhang H, Zhu L, Xue P. Laser direct metal deposition of variable width thin-walled structures in Inconel 718 alloy by coaxial powder feeding. The International Journal of Advanced Manufacturing Technology, 2020, 108(3): 821-840 doi: 10.1007/s00170-020-05434-3
|
[10] |
Zhu G, Li D, Zhang A, et al. The influence of laser and powder defocusing characteristics on the surface quality in laser direct metal deposition. Optics & Laser Technology, 2012, 44(2): 349-356
|
[11] |
El Cheikh H, Courant B, Hascoët JY, et al. Prediction and analytical description of the single laser track geometry in direct laser fabrication from process parameters and energy balance reasoning. Journal of Materials Processing Technology, 2012, 212(9): 1832-1839 doi: 10.1016/j.jmatprotec.2012.03.016
|
[12] |
王予, 黄延禄, 杨永强. 同轴送粉激光定向能量沉积IN718的数值模拟. 中国激光, 2021, 48(6): 185-196 (Wang Yu, Huang Yanlu, Yang Yongqiang. Numerical Simulation on Coaxial Powder Feeding Laser Directional Energy Deposition of IN718. Chinese Journal of Laser, 2021, 48(6): 185-196 (in Chinese)
|
[13] |
Lee Y, Farson DF. Simulation of transport phenomena and melt pool shape for multiple layer additive manufacturing. Journal of Laser Applications, 2016, 28(1): 12006 doi: 10.2351/1.4935711
|
[14] |
Knapp GL, Mukherjee T, Zuback JS, et al. Building blocks for a digital twin of additive manufacturing. Acta Materialia, 2017, 135: 390-399 doi: 10.1016/j.actamat.2017.06.039
|
[15] |
Lian Y, Gan Z, Yu C, et al. A cellular automaton finite volume method for microstructure evolution during additive manufacturing. Materials & Design, 2019, 169: 107672
|
[16] |
Zhao Z, Zhu Q, Yan J. A thermal multi-phase flow model for directed energy deposition processes via a moving signed distance function. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113518 doi: 10.1016/j.cma.2020.113518
|
[17] |
Khamidullin BA, Tsivilskiy IV, Gorunov AI, et al. Modeling of the effect of powder parameters on laser cladding using coaxial nozzle. Surface and Coatings Technology, 2019, 364: 430-443 doi: 10.1016/j.surfcoat.2018.12.002
|
[18] |
Qi H, Mazumder J, Ki H. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. Journal of Applied Physics, 2006, 100(2): 24903 doi: 10.1063/1.2209807
|
[19] |
Sun Z, Guo W, Li L. Numerical modelling of heat transfer, mass transport and microstructure formation in a high deposition rate laser directed energy deposition process. Additive Manufacturing, 2020, 33: 101175 doi: 10.1016/j.addma.2020.101175
|
[20] |
贾文鹏, 陈静, 林鑫等. 激光快速成形过程中粉末与熔池交互作用的数值模拟. 金属学报, 2007(5): 546-552 (Jia Wenpeng, Chen Jing, Lin Xin, et al. Numerical simulation of interaction between metal powder and melting pool during laser rapid forming. Acta Metallurgica Sinica, 2007(5): 546-552 (in Chinese) doi: 10.3321/j.issn:0412-1961.2007.05.018
|
[21] |
Wang S, Zhu L, Fuh JYH, et al. Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition. Optics and Lasers in Engineering, 2020, 127: 105950 doi: 10.1016/j.optlaseng.2019.105950
|
[22] |
Wang S, Zhu L, Dun Y, et al. Multi-physics modeling of direct energy deposition process of thin-walled structures: defect analysis. Computational Mechanics, 2021, 67(4): 1229-1242 doi: 10.1007/s00466-021-01992-9
|
[23] |
Aggarwal A, Chouhan A, Patel S, et al. Role of impinging powder particles on melt pool hydrodynamics, thermal behaviour and microstructure in laser-assisted DED process: A particle-scale DEM–CFD–CA approach. International Journal of Heat and Mass Transfer, 2020, 158: 119989 doi: 10.1016/j.ijheatmasstransfer.2020.119989
|
[24] |
Aggarwal A, Patel S, Vinod AR, et al. An integrated Eulerian-Lagrangian-Eulerian investigation of coaxial gas-powder flow and intensified particle-melt interaction in directed energy deposition process. International Journal of Thermal Sciences, 2021, 166: 106963 doi: 10.1016/j.ijthermalsci.2021.106963
|
[25] |
Wang H, Liao H, Fan Z, et al. The Hot Optimal Transportation Meshfree (HOTM) method for materials under extreme dynamic thermomechanical conditions. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112958 doi: 10.1016/j.cma.2020.112958
|
[26] |
Dao MH, Lou J. Simulations of laser assisted additive manufacturing by smoothed particle hydrodynamics. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113491 doi: 10.1016/j.cma.2020.113491
|
[27] |
Tan H, Zhang F, Wen R, et al. Experiment study of powder flow feed behavior of laser solid forming. Optics and Lasers in Engineering, 2012, 50(3): 391-398 doi: 10.1016/j.optlaseng.2011.10.017
|
[28] |
Lee YS, Nordin M, Babu SS, et al. Influence of fluid convection on weld pool formation in laser cladding. Weld. J, 2014, 93(8): 292-300
|
[29] |
Gan Z, Yu G, He X, et al. Surface-active element transport and its effect on liquid metal flow in laser-assisted additive manufacturing. International Communications in Heat and Mass Transfer, 2017, 86: 206-214 doi: 10.1016/j.icheatmasstransfer.2017.06.007
|
[30] |
Wei HL, Mukherjee T, Zhang W, et al. Mechanistic models for additive manufacturing of metallic components. Progress in Materials Science, 2021, 116: 100703 doi: 10.1016/j.pmatsci.2020.100703
|
[31] |
Liu YG, Li HM, Li MQ. Roles for shot dimension, air pressure and duration in the fabrication of nanocrystalline surface layer in TC17 alloy via high energy shot peening. Journal of Manufacturing Processes, 2020, 56: 562-570 doi: 10.1016/j.jmapro.2020.05.019
|
[1] | Zhang Yuanxiang, Liang Lihua, Zhang Jicheng, Chen Junjun, Sheng Yufeng. MODELING OF ELECTROMIGRATION FAILURE PREDICTING FOR FCBGA SOLDER BUMP UNDER MULTI-PHYSICAL FIELD LOADS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 487-496. DOI: 10.6052/0459-1879-18-077 |
[2] | Chen Jianqiang, Chen Qi, Yuan Xianxu, Xie Yufei. NUMERICAL SIMULATION STUDY ON DYNAMIC RESPONSE UNDER RUDDER CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 302-306. DOI: 10.6052/0459-1879-12-222 |
[3] | Zhenpeng Liao, Heng Liu, Zhinan Xie. An explicit method for numerical simulation of wave motion---1-D wave motion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 350-360. DOI: 10.6052/0459-1879-2009-3-2007-635 |
[4] | Hillslope soil erosion process model for natural rainfall events[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3). DOI: 10.6052/0459-1879-2008-3-2006-329 |
[5] | Zhenhua Huang, M.S. Ghidaoui. A model for the scattering of long waves by slotted breakwaters in the presence of currents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 1-9. DOI: 10.6052/0459-1879-2007-1-2006-240 |
[6] | NUMERICAL MODELLING OF POLLUTANT TRANSPORT IN UNSATURATED/SATURATED SOILS 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(3): 321-332. DOI: 10.6052/0459-1879-1998-3-1995-133 |
[7] | PATH SELECTION AND NUMERICAL SIMULATION OF INTERFACIAL FRACTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(3): 355-358. DOI: 10.6052/0459-1879-1997-3-1995-237 |
[8] | CRACK TIP SUPERBLUNTING: EXPERIMENT, THEORY AND NUMERICAL SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 468-478. DOI: 10.6052/0459-1879-1993-4-1995-667 |
1. |
于飞,廉艳平,李明健,高汝鑫. 金属增材制造晶体塑性有限胞元自洽聚类分析方法. 力学学报. 2024(07): 1916-1930 .
![]() | |
2. |
马广义,王宏宇,马世勇,邸腾达,牛方勇,吴东江. 基于DPM-VOF方法的AlCoCrFeNi高熵合金同轴送粉激光定向能量沉积过程数值模拟. 中国激光. 2024(24): 158-171 .
![]() | |
3. |
刘鹏伟,廖福渝,赵英杰,赵紫松,宋立军,刘鑫刚. 基于物理信息数据驱动方法的TC4合金增材制造温度场预测. 塑性工程学报. 2023(06): 166-175 .
![]() | |
4. |
牛洋洋 ,李统 ,周文博 ,盛冬林 ,鄢阿敏 ,曹富华 ,陈艳 ,汪海英 ,戴兰宏 . 增材制造Ti6Al4V钛合金的激波压缩状态方程与动态变形机理研究. 力学学报. 2023(08): 1673-1685 .
![]() | |
5. |
姚喆赫,钱泓宇,余沛坰,陈雅伦,张群莉,刘云峰,姚建华. 送粉/送丝激光增材修复Inconel 718高温合金V形槽. 焊接学报. 2023(10): 71-78+137 .
![]() | |
6. |
张炜,萧伟健,袁传牛,张宁,刘焜. 离散元法铁粉末压制中粒径分布对力链演化机制的影响. 力学学报. 2022(09): 2489-2500 .
![]() |