Citation: | Luo Jian, Wang Zhihui. Compressible Couette flow and its heat transfer under vibrational nonequilibrium effects. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 83-93. DOI: 10.6052/0459-1879-21-414 |
[1] |
周恒, 张涵信. 空气动力学的新问题. 中国科学: 物理学 力学 天文学, 2015, 45: 104709 (Zhou Heng, Zhang Hanxin. New problems of aerodynamics. Sci. Sin.-Phys. Mech. Astron., 2015, 45: 104709 (in Chinese) doi: 10.1360/SSPMA2015-00402
|
[2] |
樊菁. 稀薄气体动力学: 进展与应用. 力学进展, 2013, 43(2): 185-201 (Fan Jing. Rarefied gas dynamics: advances and applications. Advances in Mechanics, 2013, 43(2): 185-201 (in Chinese)
|
[3] |
Bertin JJ, Cummings RM. Critical hypersonic aerothermodynamic phenomena. Annual Review of Fluid Mechanics, 2006, 38(1): 129-157 doi: 10.1146/annurev.fluid.38.050304.092041
|
[4] |
Muntz EP. Rarefied gas dynamics. Annual Review of Fluid Mechanics, 1989, 21(1): 387-422 doi: 10.1146/annurev.fl.21.010189.002131
|
[5] |
Chen J, Zhou H. Rarefied gas effect in hypersonic shear flows. Acta Mechanica Sinica, 2021, 37(1): 2-17 doi: 10.1007/s10409-021-01051-9
|
[6] |
Jiang W, Qiu H, Yang Y, et al. High frequency ac electric glow discharge visualization technology and application in big diameter hypersonic low-density wind tunnel. Advances in Aerodynamics, 2021, 3(1): 14
|
[7] |
刘畅, 徐昆. 离散时空直接建模思想及其在模拟多尺度输运中的应用. 空气动力学学报, 2019, 38(2): 197-216 (Liu Chang, Xu Kun. Direct modeling methodology and its applications in multiscale transport process. Acta Aerodynamica Sinica, 2019, 38(2): 197-216 (in Chinese)
|
[8] |
王宏宇, 王辉, 石义雷等. 一种高超声速稀薄流激波干扰气动热测量技术. 宇航学报, 2020, 41(12): 1525-1532 (Wang Hongyu, Wang Hui, Shi Yilei, et al. An aerothermodynamics measuring technique for shock interactions in hypersonic low density flow. Journal of Astronautics, 2020, 41(12): 1525-1532 (in Chinese)
|
[9] |
Candler GV. Rate effects in hypersonic flows. Annual Review of Fluid Mechanics, 2019, 51(1): 379-402 doi: 10.1146/annurev-fluid-010518-040258
|
[10] |
李志辉, 梁杰, 李中华等. 跨流域空气动力学模拟方法与返回舱再入气动研究. 空气动力学学报, 2018, 36(5): 826-847 (Li Zhihui, Liang Jie, Li Zhonghua, et al. Simulation methods of aerodynamics covering various flow regimes and applications to aerodynamic characteristics of re-entry spacecraft module. Acta Aerodynamica Sinica, 2018, 36(5): 826-847 (in Chinese) doi: 10.7638/kqdlxxb-2018.0121
|
[11] |
Coumar S, Lago V. Influence of Mach number and static pressure on plasma flow control of supersonic and rarefied flows around a sharp flat plate. Experiments in Fluids, 2017, 58(6): 74
|
[12] |
Wu L, Reese JM, Zhang Y. Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows. Journal of Fluid Mechanics, 2014, 746: 53-84 doi: 10.1017/jfm.2014.79
|
[13] |
Ivanov MS, Gimelshein SF. Computational hypersonic rarefied flows. Annual Review of Fluid Mechanics, 1998, 30(1): 469-505 doi: 10.1146/annurev.fluid.30.1.469
|
[14] |
Oran ES, Oh CK, Cybyk BZ. Direct simulation Monte Carlo: recent advances and applications. Annual Review of Fluid Mechanics, 1998, 30(1): 403-441 doi: 10.1146/annurev.fluid.30.1.403
|
[15] |
Anderson JD. Hypersonic and High-Temperature Gas Dynamics, 2nd Edn. Reston: American Institute of Aeronautics and Astronautics, 2006
|
[16] |
Kasen S. Thermal management at hypersonic leading edges. [PhD Thesis]. Virginia: University of Virginia, 2013
|
[17] |
Schwartz RN, Slawsky ZI, Herzfeld KF. Calculation of vibrational relaxation times in gases. The Journal of Chemical Physics, 1952, 20(10): 1591-1599 doi: 10.1063/1.1700221
|
[18] |
Schwartz RN, Herzfeld KF. Vibrational relaxation times in gases (three-dimensional treatment). The Journal of Chemical Physics, 1954, 22(5): 767-773 doi: 10.1063/1.1740190
|
[19] |
Shuler KE. Studies in non-equilibrium rate processes. II. The relaxation of vibrational non-equilibrium distributions in chemical reactions and shock waves. The Journal of Physical Chemistry, 1957, 61(7): 849-856
|
[20] |
Montroll EW, Shuler KE. Studies in nonequilibrium rate processes. I. The relaxation of a system of harmonic oscillators. The Journal of Chemical Physics, 1957, 26(3): 454-464
|
[21] |
Boyd ID, Josyula E. State resolved vibrational relaxation modeling for strongly nonequilibrium flows. Physics of Fluids, 2011, 23(5): 57101 doi: 10.1063/1.3584128
|
[22] |
Tong H. Effects of dissociation energy and vibrational relaxation on heat transfer. AIAA Journal, 1966, 4(1): 14-18 doi: 10.2514/3.3377
|
[23] |
Mori Y, Himeno N, Hijikata K, et al. Effects of vibrational relaxation of multi-atomic molecules on stagnation heat transfer. International Journal of Heat and Mass Transfer, 1980, 23(12): 1625-1633 doi: 10.1016/0017-9310(80)90221-5
|
[24] |
Schubert BS. Vibrational nonequilibrium stagnation shock layers at hypersonic speed and low Reynolds number. International Journal of Heat and Mass Transfer, 1978, 21(8): 1041-1048 doi: 10.1016/0017-9310(78)90102-3
|
[25] |
Bird GA. The DSMC Method. CreateSpace Independent Publishing Platform, 2013
|
[26] |
Treanor CE, Marrone PV. Effect of dissociation on the rate of vibrational relaxation. The Physics of Fluids, 1962, 5(9): 1022 doi: 10.1063/1.1724467
|
[27] |
Marrone PV, Treanor CE. Chemical relaxation with preferential dissociation from excited vibrational levels. The Journal of Chemical Physics, 1963, 6(9): 1215
|
[28] |
Heims SP. Moment equations for vibrational relaxation coupled with dissociation. The Journal of Chemical Physics, 1963, 38(3): 603-606 doi: 10.1063/1.1733712
|
[29] |
彭傲平, 李志辉, 吴俊林等. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析. 物理学报, 2017, 66(20): 204703 (Peng Aoping, Li Zhihui, Wu Junlin, et al. Validation and analysis of gas-kinetic unified algorithm for solving Boltzmann model equation with vibrational energy excitation. Acta Physica Sinica, 2017, 66(20): 204703 (in Chinese) doi: 10.7498/aps.66.204703
|
[30] |
杨超, 孙泉华. 高温气体热化学反应的DSMC微观模型分析. 力学学报, 2018, 50(4): 722-733 (Yang Chao, Sun Quanhua. Analysis of DSMC reaction models for high temperature gas simulation. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 722-733 (in Chinese) doi: 10.6052/0459-1879-18-056
|
[31] |
Luo J, Wang ZH. Analogy between vibrational and chemical nonequilibrium effects on stagnation flows. AIAA Journal, 2020, 58(5): 2156-2164 doi: 10.2514/1.J059010
|
[32] |
Gladwell GML, Meier GEA, Sreenivasan KR, et al. IUTAM Symposium on One Hundred Years of Boundary Layer Research. Solid Mechanics and Its Applications. Dordrecht: Springer Netherlands, 2006
|
[33] |
Illingworth CR. Some Solutions of the Equations of Flow of A Viscous Compressible Fluid. Cambridge: Cambridge University Press, 1950
|
[34] |
Liepmann HW, Bleviss ZO. The effects of dissociation and ionization on compressible Couete flow. Douglas Aircraft Co. Report, SM-19831, 1956
|
[35] |
Liepmann HW, Roshko A. Elements of Gas Dynamics. Mineola New York: Dover Publications Inc, 2001
|
[36] |
Morris DL, Hannon L, Garcia AL. Slip length in a dilute gas. Physical Review A, 1992, 46(8): 5279-5281 doi: 10.1103/PhysRevA.46.5279
|
[37] |
López-Lemus J, Velasco RM. Slip boundary conditions in Couete flow. Physica A: Statistical Mechanics and its Applications, 1999, 274(3-4): 454-465 doi: 10.1016/S0378-4371(99)00270-8
|
[38] |
Gallis MA, Torczynski JR, Rader DJ, et al. Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couete flow. Physics of Fluids, 2006, 18(1): 17104 doi: 10.1063/1.2166449
|
[39] |
Abramov AA, Butkovskii AV. The extended Reynolds analogy for the Couete problem: similarity parameters. International Journal of Heat and Mass Transfer, 2018, 117: 313-318 doi: 10.1016/j.ijheatmasstransfer.2017.10.011
|
[40] |
Sarma GSR. Some parameter studies on hypersonic Couete flow. International Journal of Modern Physics C, 1994, 5(2): 237-239 doi: 10.1142/S0129183194000234
|
[41] |
Rubesin MW, Johnson HA. A critical review of skin-friction and heat-transfer solutions of the laminar boundary layer of a flat plate. Transactions of the ASME, 1949, 71(4): 383-388
|
[42] |
Dorrance WH. Viscous Hypersonic Flow: Theory of Reacting and Hypersonic Boundary Layers. Mineola New York: Dover Publications Inc, 2017
|
[43] |
Eckert ERG. Engineering relations for heat transfer and friction in high-velocity laminar and turbulent boundary-layer flow over surfaces with constant pressure and temperature. Transactions of the ASME, 1956, 78(6): 1273-1283
|
[44] |
Young GBW, Janssen E. The compressible boundary layer. Journal of the Aeronautical Sciences, 1952, 19(4): 229-236 doi: 10.2514/8.2236
|
[45] |
Reynolds O. On the extent and action of the heating surface of steam boilers. Proceedings of the Manchester Literary and Philosophical Society, 1874, 14: 7-12
|
[46] |
Van Driest ER. Investigation of laminar boundary layer in compressive fluids using the crocco method. NACA Technical Note 2597, 1952
|
[47] |
Cohen NB. Correlation formulas and tables of density and some transport properties of equilibrium dissociating air for use in solutions of the boundary-layer equations. NASA Technical Note D-194, 1960
|
[48] |
Debrestian DJ, Anderson JD. Reference temperature method and reynolds analogy for chemically reacting nonequilibrium flowfields. Journal of Thermophysics and Heat Transfer, 1994, 8(1): 190-192 doi: 10.2514/3.522
|
[49] |
Ott JD, Anderson JD. Effects of nonequilibrium chemistry on the reference temperature method and Reynolds analogy. Journal of Thermophysics and Heat Transfer, 1994, 8(2): 381-384 doi: 10.2514/3.553
|
[50] |
Uribe FJ, Mason EA, Kestin J. Thermal conductivity of nine polyatomic gases at low density. Journal of Physical and Chemical Reference Data, 1990, 19(5): 1123-1136 doi: 10.1063/1.555864
|
[51] |
Bergman TL, Incropera FP. Fundamentals of Heat and Mass Transfer, 7th Edn. Hoboken NJ: Wiley, 2011
|
[52] |
Chen XX, Wang ZH, Yu YL. Nonlinear shear and heat transfer in hypersonic rarefied flows past flat plates. AIAA Journal, 2015, 53(2): 413-419 doi: 10.2514/1.J053168
|
[1] | Xue Yun, Chen Liqun. GENERALIZATION OF KIRCHHOFF KINETIC ANALOGY TO THIN ELASTIC SHELLS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 234-247. DOI: 10.6052/0459-1879-20-266 |
[2] | Huang Guangjing, Dai Yuting, Yang Chao. PLASMA-BASED FLOW CONTROL ON PITCHING AIRFOIL AT LOW REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 136-155. DOI: 10.6052/0459-1879-20-183 |
[3] | Chen Xingxing, Chen Hao, Fan Jingjing, Wen Yufen, Zhang Zheng, Ma Youlin. GENERAL REYNOLDS ANALOGY RELATION ON BLUNT-NOSED BODIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1055-1062. DOI: 10.6052/0459-1879-19-365 |
[4] | Bao Yun, Xi Lingchu. PARALLEL DIRECT METHOD OF LES FOR TURBULENT WIND FIELD WITH HIGH REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 656-662. DOI: 10.6052/0459-1879-20-052 |
[5] | Li Congzhou, Zhang Xinshu, Hu Xiaofeng, Li Wei, You Yunxiang. THE STUDY OF FLOW PAST MULTIPLE CYLINDERS AT HIGH REYNOLDS NUMBERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 233-243. DOI: 10.6052/0459-1879-17-346 |
[6] | Hu Haibao, Bao Luyao, Huang Suhe. SIMULATION OF THE LIQUID COUETTE FLOW IN A NANO-CHANNEL WITH DIFFERENT WETTABILITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 507-514. DOI: 10.6052/0459-1879-12-244 |
[7] | 研究了雷诺数Re=200, 1000, 线速度比$\alpha =0.5$,[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(4): 466-471. DOI: 10.6052/0459-1879-2004-4-2003-021 |
[8] | BIFURCATION THEORY METHODS IN THE DESIGN OF ANALOG NEURAL NETWORKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(3): 312-319. DOI: 10.6052/0459-1879-1994-3-1995-551 |
[9] | A GENERALIZED REYNOLDS EQUATION BASED ON NONNEWTONIAN FLOW IN LUBRICATION MECHANICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(3): 283-289. DOI: 10.6052/0459-1879-1991-3-1995-839 |
[10] | SEPARATION FLOW AROUND A CYLINDER IN SHEAR FLOW AT A HIGH REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(4): 463-467. DOI: 10.6052/0459-1879-1990-4-1995-970 |