Citation: | Zhang Xuhui, Chen Luyang, Chen Xiaoyu, Xu Dongmei, Zhu Fulin, Guo Yan. Research on dynamics characteristics of linear-arch composed beam tri-stable piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2996-3006. DOI: 10.6052/0459-1879-21-392 |
[1] |
Li K, Xie Z, Zeng D, et al. Power cable vibration monitoring based on wireless distributed sensor network. Procedia Computer Science, 2021, 183: 401-411 doi: 10.1016/j.procs.2021.02.077
|
[2] |
Joris L, Dupont F, Laurent P, et al. An autonomous sigfox wireless sensor node for environmental monitoring. IEEE Sensors Letters, 2019, 3(7): 1-4
|
[3] |
Fang L, Peng L. Design and research on wireless intelligent monitoring system for sewage pipeline leakage of textile mill. Microprocessors and Microsystems, 2021, 81: 103734 doi: 10.1016/j.micpro.2020.103734
|
[4] |
亓有超, 赵俊青, 张弛. 微纳振动能量收集器研究现状与展望. 机械工程学报, 2020, 56(13): 1-15 (Qi Youchao, Zhao Junqing, Zhang Chi. Review and prospect of micro-nano vibration energy harvesters. Journal of Mechanical Engineering, 2020, 56(13): 1-15 (in Chinese) doi: 10.3901/JME.2020.13.001
|
[5] |
Tang X, Wang X, Cattley R, et al. Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: A review. Sensors, 2018, 18(12): 4113 doi: 10.3390/s18124113
|
[6] |
Ahmad I, Hee LM, Abdelrhman AM, et al. Scopes, challenges and approaches of energy harvesting for wireless sensor nodes in machine condition monitoring systems: A review. Measurement, 2021, 183: 109856
|
[7] |
Yang Z, Zhou S, Zu J, et al. High-performance piezoelectric energy harvesters and their applications. Joule, 2018, 2(4): 642-697 doi: 10.1016/j.joule.2018.03.011
|
[8] |
高扬, 穆继亮, 何剑等. 煤机设备无线自供电状态监测系统. 机械工程学报, 2020, 56(13): 41-49 (Gao Yang, Mu Jiliang, He Jian, et al. Wireless self-powered condition monitoring system for coal machine equipment. Journal of Mechanical Engineering, 2020, 56(13): 41-49 (in Chinese) doi: 10.3901/JME.2020.13.041
|
[9] |
Yu L, Tang L, Yang T. Piezoelectric passive self-tuning energy harvester based on a beam-slider structure. Journal of Sound and Vibration, 2020, 489: 115689 doi: 10.1016/j.jsv.2020.115689
|
[10] |
曹东兴, 马鸿博, 张伟. 附磁压电悬臂梁流致振动俘能特性分析. 力学学报, 2019, 51(4): 1148-1155 (Cao Dongxing, Ma Hongbo, Zhang Wei. Energy harvesting analysis of a piezoelectric cantilever beam with magnets for flow-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155 (in Chinese) doi: 10.6052/0459-1879-18-426
|
[11] |
何燕丽, 赵翔. 曲梁压电俘能器强迫振动的格林函数解. 力学学报, 2019, 51(4): 1170-1179 (He Yanli, Zhao Xiang. Closed-form solutions for forced vibrations of curved piezoelectric energy harvesters by means of Green’s functions. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1170-1179 (in Chinese) doi: 10.6052/0459-1879-19-007
|
[12] |
Abdelkefi A, Nayfeh AH, Hajj MR. Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dynamics, 2012, 67(2): 1147-1160 doi: 10.1007/s11071-011-0059-6
|
[13] |
Yildirim T, Ghayesh MH, Li W, et al. A review on performance enhancement techniques for ambient vibration energy harvesters. Renewable and Sustainable Energy Reviews, 2017, 71: 435-449 doi: 10.1016/j.rser.2016.12.073
|
[14] |
芮小博, 李一博, 曾周末. 压电悬臂梁振动能量收集器研究进展. 振动与冲击, 2020, 39(17): 112-123 (Rui Xiaobo, Li Yibo, Zeng Zhoumo. Research progress of piezoelectric cantilever vibration energy collector. Journal of Vibration and Shock, 2020, 39(17): 112-123 (in Chinese)
|
[15] |
Li P, Liu Y, Wang Y, et al. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure. AIP Advances, 2015, 5(4): 047151 doi: 10.1063/1.4919711
|
[16] |
Liu D, Al-Haik M, Zakaria M, et al. Piezoelectric energy harvesting using L-shaped structures. Journal of Intelligent Material Systems and Structures, 2018, 29(6): 1206-1215 doi: 10.1177/1045389X17730926
|
[17] |
Zhou S, Hobeck JD, Cao J, et al. Analytical and experimental investigation of flexible longitudinal zigzag structures for enhanced multi-directional energy harvesting. Smart Materials and Structures, 2017, 26(3): 035008 doi: 10.1088/1361-665X/26/3/035008
|
[18] |
Rezaei M, Khadem SE, Firoozy P. Broadband and tunable PZT energy harvesting utilizing local nonlinearity and tip mass effects. International Journal of Engineering Science, 2017, 118: 1-15 doi: 10.1016/j.ijengsci.2017.04.001
|
[19] |
Mak KH, McWilliam S, Popov AA, et al. Performance of a cantilever piezoelectric energy harvester impacting a bump stop. Journal of Sound and Vibration, 2011, 330(25): 6184-6202 doi: 10.1016/j.jsv.2011.07.008
|
[20] |
陈孝玉, 张旭辉, 左萌等. 拱形−线形非线性磁力耦合压电俘能器建模与特性分析. 振动与冲击, 2021, 40(9): 110-119 (Chen Xiaoyu, Zhang Xuhui, Zuo Meng, et al. Modeling and characteristic analysis of arch-thready nonlinear magnetic coupled piezoelectric energy harvester. Journal of Vibration and Shock, 2021, 40(9): 110-119 (in Chinese)
|
[21] |
Wang W, Cao J, Bowen CR, et al. Multiple solutions of asymmetric potential bistable energy harvesters: numerical simulation and experimental validation. The European Physical Journal B, 2018, 91(10): 1-9
|
[22] |
Sun S, Leng Y, Su X, et al. Performance of a novel dual-magnet tri-stable piezoelectric energy harvester subjected to random excitation. Energy Conversion and Management, 2021, 239: 114246 doi: 10.1016/j.enconman.2021.114246
|
[23] |
Zou D, Liu G, Rao Z, et al. Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations. Applied Energy, 2021, 302: 117585 doi: 10.1016/j.apenergy.2021.117585
|
[24] |
Zhou S, Cao J, Inman DJ, et al. Broadband tristable energy harvester: modeling and experiment verification. Applied Energy, 2014, 133: 33-39 doi: 10.1016/j.apenergy.2014.07.077
|
[25] |
Zhu P, Ren X, Qin W, et al. Theoretical and experimental studies on the characteristics of a tri-stable piezoelectric harvester. Archive of Applied Mechanics, 2017, 87(9): 1541-1554 doi: 10.1007/s00419-017-1270-9
|
[26] |
Leng Y, Tan D, Liu J, et al. Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation. Journal of sound and vibration, 2017, 406: 146-160 doi: 10.1016/j.jsv.2017.06.020
|
[27] |
Jung J, Kim P, Lee JI, et al. Nonlinear dynamic and energetic characteristics of piezoelectric energy harvester with two rotatable external magnets. International Journal of Mechanical Sciences, 2015, 92: 206-222 doi: 10.1016/j.ijmecsci.2014.12.015
|
[28] |
Wang G, Zhao Z, Liao WH, et al. Characteristics of a tri-stable piezoelectric vibration energy harvester by considering geometric nonlinearity and gravitation effects. Mechanical Systems and Signal Processing, 2020, 138: 106571 doi: 10.1016/j.ymssp.2019.106571
|
[29] |
Cao J, Zhou S, Wang W, et al. Influence of potential well depth on nonlinear tristable energy harvesting. Applied Physics Letters, 2015, 106(17): 173903 doi: 10.1063/1.4919532
|
[30] |
Chen X, Zhang X, Wang L, et al. An arch-linear composed beam piezoelectric energy harvester with magnetic coupling design, modeling and dynamic analysis. Journal of Sound and Vibration, 2021: 116394
|
[31] |
Zhao J, Yang J, Lin Z, et al. An arc-shaped piezoelectric generator for multi-directional wind energy harvesting. Sensors and Actuators A:Physical, 2015, 236: 173-179 doi: 10.1016/j.sna.2015.10.047
|
[32] |
吴吉, 章定国, 黎亮等. 带集中质量的旋转柔性曲梁动力学特性分析. 力学学报, 2019, 51(4): 1134-114 (Wu Ji, Zhang Dingguo, Li Liang, Chen Yuanzhao, Qian Zhenjie. Dynamic characteristics analysis of a rotating flexible curved beam with a concentrated mass. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1134-114 (in Chinese) doi: 10.6052/0459-1879-19-027
|
[33] |
Zhou W, Wang B, Lim CW, et al. A distributed-parameter electromechanical coupling model for a segmented arc-shaped piezoelectric energy harvester. Mechanical Systems and Signal Processing, 2021, 146: 107005 doi: 10.1016/j.ymssp.2020.107005
|
[34] |
张旭辉, 赖正鹏, 吴中华等. 新型双稳态压电振动俘能系统的理论建模与实验研究. 振动工程学报, 2019, 32(1): 87-96 (Zhang Xuhui, Lai Zhengpeng, Wu Zhonghua, et al. Theoretical modeling and experimental study of a new bistable piezoelectric vibration energy harvesting system. Journal of Vibration Engineering, 2019, 32(1): 87-96 (in Chinese)
|
[35] |
Zhu P, Ren X, Qin W, et al. Improving energy harvesting in a tri-stable piezomagnetoelastic beam with two attractive external magnets subjected to random excitation. Arch Appl Mech, 2017, 87: 45-57 doi: 10.1007/s00419-016-1175-z
|
[36] |
唐炜, 王小璞, 曹景军. 非线性磁式压电振动能量采集系统建模与分析. 物理学报, 2014, 63(24): 76-89 (Tang Wei, Wang Xiaopu, Cao Jingjun. Modeling and analysis of piezoelectric vibration energy harvesting system using permanent magnetics. Acta Physica Sinica, 2014, 63(24): 76-89 (in Chinese)
|
[37] |
Erturk A, Inman DJ. Piezoelectric Energy Harvesting. John Wiley & Sons, 2011
|
[1] | Li Zhonghua, Li Zhihui, Wu Junlin. RESEARCH ON DSMC NUMERICAL METHOD OF PHASE TRANSITION IN VACUUM PLUME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1356-1365. DOI: 10.6052/0459-1879-23-419 |
[2] | Jin Wei, Liu Jiaqi, Zhang Qiwei, Fang Hongbin. DYNAMIC ANALYSIS OF HORIZONTAL AND UPHILL WALKING BASED ON THE NEURO-MUSCULOSKELETAL-EXOSKELETAL COUPLED SIMULATION FRAMEWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 817-831. DOI: 10.6052/0459-1879-23-538 |
[3] | Bai Zhengfeng, Kong Qingfeng, Zhao Qi. DYNAMIC MODELING AND SIMULATION OF SOFT CONTINUOUS MANIPULATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 184-195. DOI: 10.6052/0459-1879-21-481 |
[4] | Gao Chentong, Li Liang, Zhang Dingguo, Qian Zhenjie. DYNAMIC MODELING AND SIMULATION OF ROTATING FGM TAPERED BEAMS WITH SHEAR EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 654-666. DOI: 10.6052/0459-1879-18-011 |
[5] | Liu Liqin, Guo Ying, Zhao Haixiang, Tang Yougang. DYNAMIC MODELING, SIMULATION AND MODEL TESTS RESEARCH ON THE FLOATING VAWT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 299-307. DOI: 10.6052/0459-1879-16-264 |
[6] | Fan Xinxiu, Wang Qi. RESEARCH ON MODELING AND SIMULATION OF LONGITUDINAL VEHICLE DYNAMICS BASED ON NON-SMOOTH DYNAMICS OF MULTIBODY SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 301-309. DOI: 10.6052/0459-1879-14-323 |
[7] | Zhang Yun, Li Junfeng. A SURVEY OF GRANULAR DYNAMICS MODELING AND SIMULATION METHODS FOR RUBBLE-PILE ASTEROIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 1-7. DOI: 10.6052/0459-1879-14-329 |
[8] | Li Jingyang Yu Yang Hexi Baoyin Junfeng Li. Simulation and comparison of different dynamical models of space webs[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 542-550. DOI: 10.6052/0459-1879-2011-3-lxxb2010-390 |
[9] | Geng Yunfei Chao Yan. Numerical investigation of self-aligning spiked bodies at hypersonic speeds[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 441-446. DOI: 10.6052/0459-1879-2011-3-lxxb2010-732 |
[10] | Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198 |
1. |
石慧荣,左存胜,高全福. 随动压电磁耦合能量采集器的组合共振分析. 振动与冲击. 2024(03): 209-217+226 .
![]() | |
2. |
张旭辉,朱福林,潘家楠,陈孝玉,郭岩,许恒涛,田浩. 磁力耦合阵列式压电俘能器振动特性研究. 振动工程学报. 2024(07): 1191-1199 .
![]() | |
3. |
梁超,马洪业,王珂,严博. 基于非线性谐振电路的双稳态俘能器的俘能与动力学特性研究. 力学学报. 2023(05): 1181-1194 .
![]() | |
4. |
孙维鹏,刘宸涵,郁小彬,胡珅,钟可欣,赵道利. 钝体表面附着物对低速水流压电俘能器性能影响研究. 力学学报. 2023(07): 1463-1472 .
![]() |