Citation: | Zhao Yaomin, Xu Xiaowei. Data-driven turbulence modelling based on gene-expression programming. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2640-2655. DOI: 10.6052/0459-1879-21-391 |
[1] |
Pope SB. Turbulent Flows. Cambridge University Press, 2000
|
[2] |
Slotnick J, Khodadoust A, Alonso J, et al. CFD vision 2030 study: A path to revolutionary computational aero-sciences. NASA Technical Report, NASA/CR-2014-218178, 2014
|
[3] |
Launder BE, Reece EJ, Rodi W. Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 1975, 68(3): 537-566 doi: 10.1017/S0022112075001814
|
[4] |
Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows//30th Aerospace Sciences Meeting and Exhibit, 1992: 439
|
[5] |
Launder BE, Spalding DB. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289 doi: 10.1016/0045-7825(74)90029-2
|
[6] |
Wilcox DC. Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 1988, 26(11): 1299-1310 doi: 10.2514/3.10041
|
[7] |
Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598-1605 doi: 10.2514/3.12149
|
[8] |
Hunt JCR, Savill AM. Guidelines and criteria for the use of turbulence models in complex flows//Prediction of Turbulent Flows, Cambridge University Press, 2005: 291-343
|
[9] |
Yoder DA, DeBonis JR, Georgiadis NJ. Modeling of turbulent shear flows. NASA Technical Report, NASA/TM-2013-218072, 2013
|
[10] |
Brunton SL, Noack BR, Koumoutsakos P. Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 2020, 52: 477-508 doi: 10.1146/annurev-fluid-010719-060214
|
[11] |
Duraisamy K, Iaccarino G, Xiao H. Turbulence modeling in the age of data. Annual Review of Fluid Mechanics, 2019, 51: 357-377 doi: 10.1146/annurev-fluid-010518-040547
|
[12] |
张伟伟, 朱林阳, 刘溢浪等. 机器学习在湍流模型构建中的应用进展. 空气动力学学报, 2019, 37(3): 444-454 (Zhang Weiwei, Zhu Linyang, Liu Yilang, et al. Progresses in the application of machine learning in turbulence modeling. Acta Aerodynamica Sinica, 2019, 37(3): 444-454 (in Chinese) doi: 10.7638/kqdlxxb-2019.0036
|
[13] |
Edeling WN, Cinnella P, Dwight RP. Predictive RANS simulations via Bayesian model-scenario averaging. Journal of Computational Physics, 2014, 275: 65-91 doi: 10.1016/j.jcp.2014.06.052
|
[14] |
Parish EJ, Duraisamy K. A paradigm for data-driven predictive modeling using field inversion and machine learning. Journal of Computational Physics, 2016, 305: 758-774 doi: 10.1016/j.jcp.2015.11.012
|
[15] |
Ferrero A, Iollo A, Larocca F. Field inversion for data-augmented RANS modelling in turbomachinery flows. Computer & Fluids, 2020, 201: 104474
|
[16] |
Zhang ZJ, Duraisamy K. Machine learning methods for data-driven turbulence modeling//AIAA Computational Fluid Dynamics Conference, 2015: 2015-2460
|
[17] |
Yang M, Xiao Z. Improving the k–ω–γ–Ar transition model by the field inversion and machine learning framework. Physics of Fluids, 2020, 32: 064101 doi: 10.1063/5.0008493
|
[18] |
Holland JR, Baeder JD, Duraisamy K. Field inversion and machine learning with embedded neural networks: physics-consistent neural network training//AIAA Aviation 2019 Forum, 2019
|
[19] |
Duraisamy K. Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence. Physical Review Fluids, 2021, 6(5): 05054
|
[20] |
Wang JX, Wu JL, Xiao H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Physical Review Fluids, 2017, 2(3): 034603 doi: 10.1103/PhysRevFluids.2.034603
|
[21] |
Ling J, Kurzawski A, Templeton J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. Journal of Fluid Mechanics, 2016, 807: 155-166 doi: 10.1017/jfm.2016.615
|
[22] |
Pope SB. A more general effective-viscosity hypothesis. Journal of Fluid Mechanics, 1975, 72(2): 331-340 doi: 10.1017/S0022112075003382
|
[23] |
Yin Y, Yang P, Zhang Y, et al. Feature selection and processing of turbulence modeling based on an artificial neural network. Physics of Fluids, 2020, 32: 105117 doi: 10.1063/5.0022561
|
[24] |
Zhu L, Zhang W, Kou J, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils. Physics of Fluids, 2019, 31(1): 015105
|
[25] |
Zhu L, Zhang W, Sun X, et al. Turbulence closure for high Reynolds number airfoil flows by deep neural networks. Aerospace Science and Technology, 2021, 110: 106452
|
[26] |
Zhu L, Zhang W, Kou J, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils. Physics of Fluids, 2019, 31: 015105 doi: 10.1063/1.5061693
|
[27] |
Xie C, Wang J, Li H, et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence. Physics of Fluids, 2019, 31: 085112 doi: 10.1063/1.5110788
|
[28] |
Xie C, Yuan Z, Wang J. Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence. Physics of Fluids, 2020, 32: 115101 doi: 10.1063/5.0025138
|
[29] |
谢晨月, 袁泽龙, 王建春等. 基于人工神经网络的湍流大涡模拟方法. 力学学报, 2021, 53(1): 1-16 (Xie Chenyue, Yuan Zelong, Wang Jianchun, et al. Artificialneural network-based subgrid-scale models for large-eddy simulation of turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 1-16 (in Chinese)
|
[30] |
Weatheritt J, Sandberg RD. A novel evolutionary algorithm applied to algebraic modifications of the RANS stress−strain relationship. Journal of Computational Physics, 2016, 325: 22-37 doi: 10.1016/j.jcp.2016.08.015
|
[31] |
Ferreira C. Algorithm for solving gene expression programming: a new adaptive problems. Complex System, 2001, 13(2): 87-129
|
[32] |
Lav C, Sandberg RD, Philip J. A framework to develop data-driven turbulence models for flows with organised unsteadiness. Journal of Computational Physics, 2019, 383: 148-165 doi: 10.1016/j.jcp.2019.01.022
|
[33] |
Weatheritt J, Zhao Y, Sandberg RD, et al. Data-driven scalar-flux model development with application to jet in cross flow. International Journal of Heat and Mass Transfer, 2020, 147: 118931 doi: 10.1016/j.ijheatmasstransfer.2019.118931
|
[34] |
Reissmann M, Hasslberger J, Sandberg RD, et al. Application of gene expression programming to a-posteriori LES modeling of a Taylor Green vortex. Journal of Computational Physics, 2021, 424: 109859 doi: 10.1016/j.jcp.2020.109859
|
[35] |
Schoepplein M, Weatheritt J, Sandberg RD, et al. Application of an evolutionary algorithm to LES modelling of turbulent transport in premixed flames. Journal of Computational Physics, 2018, 374: 1166-1179 doi: 10.1016/j.jcp.2018.08.016
|
[36] |
Weatheritt J, Sandberg RD. The development of algebraic stress models using a novel evolutionary algorithm. International Journal of Heat and Fluid Flow, 2017, 68: 298-318 doi: 10.1016/j.ijheatfluidflow.2017.09.017
|
[37] |
Akolekar HD, Weatheritt J, Hutchins N, et al. Development and use of machine-learnt algebraic Reynolds stress models for enhanced prediction of wake mixing in LPTs. Journal of Turbomachinery, 2019, 141(4): 041010 doi: 10.1115/1.4041753
|
[38] |
Batcherlor GK. Diffusion in a field of homogeneous turbulence. Austral. J. Sci. Res., 1949, 2: 437-450
|
[39] |
Daly BJ, Harlow FH. Transport equations in turbulence. Physics of Fluids, 1970, 13(11): 2634-2649 doi: 10.1063/1.1692845
|
[40] |
Younis BA, Speziale CG, Clark TT. A rational model for the turbulent scalar fluxes. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 2005, 461(2054): 575-594
|
[41] |
Wu JL, Xiao H, Sun R, et al. RANS equations with explicit data-driven Reynolds stress closure can be ill-conditioned. Journal of Fluid Mechanics, 2019, 869: 553-586 doi: 10.1017/jfm.2019.205
|
[42] |
Thompson RL, Sampaio LEB, de Bragança Alves FAV, et al. A methodology to evaluate statistical errors in DNS data of plane channel flows. Computer & Fluids, 2016, 130: 1-7
|
[43] |
Poroseva SV, Colmenares JD, Murman SM. On the accuracy of RANS simulations with DNS data. Physics of Fluids, 2016, 28(11): 115102 doi: 10.1063/1.4966639
|
[44] |
Zhao Y, Akolekar HD, Weatheritt J, et al. RANS turbulence model development using CFD-driven machine learning. Journal of Computational Physics, 2020, 411: 109413 doi: 10.1016/j.jcp.2020.109413
|
[45] |
Pichler R, Sandberg RD, Michelassi V, et al. Investigation of the accuracy of RANS models to predict the flow through a low-pressure turbine. Journal of Turbomachinery, 2016, 138: 121009 doi: 10.1115/1.4033507
|
[46] |
Akolekar HD, Zhao Y, Sandberg RD, et al. Integration of machine-learning and computational fluid dynamics to develop turbulence models for improved turbine-wake mixing prediction. ASME Turbo Expo, GT2020-14732, 2020
|
[47] |
Weatheritt J, Pichler R, Sandberg RD, et al. Machine learning for turbulence model development using a high-fidelity HPT cascade simulation. ASME Turbo Expo, GT2017-63497, 2017
|
[48] |
Akolekar HD, Sandberg RD, Hutchins N, et al. Machine-learnt turbulence closures for low-pressure turbines with unsteady inflow conditions. Journal of Turbomachinery, 2019, 141(10): 101009 doi: 10.1115/1.4043907
|
[49] |
Ng CS, Ooi A, Lohse D, et al. Vertical natural convection: application of the unifying theory of thermal convection. Journal of Fluid Mechanics, 2015, 764: 349-361 doi: 10.1017/jfm.2014.712
|
[50] |
Xu X, Ooi A, Sandberg RD. Data-driven algebraic models of the turbulent Prandtl number for buoyancy-affected flow near a vertical surface. International Journal of Heat and Mass Transfer, 2021, 179: 121737 doi: 10.1016/j.ijheatmasstransfer.2021.121737
|
[51] |
Bodart J, Coletti F, Bermejo-Moreno I, et al. High-fidelity simulation of a turbulent inclined jet in a crossflow. Center for Turbulence Research Annual Research Briefs, 2013, 19: 263-275
|
[52] |
Sakai E, Takahashi T, Watanabe H. Large-eddy simulation of an inclined round jet issuing into a crossflow. International Journal of Heat and Mass Transfer, 2014, 69: 300-311 doi: 10.1016/j.ijheatmasstransfer.2013.10.027
|
[53] |
Akolekar HD, Waschkowski F, Zhao Y, et al. Transition modeling for low pressure turbines using computational fluid dynamics driven machine learning. Energies, 2021, 14: 4608 doi: 10.3390/en14154608
|
[54] |
Pacciani R, Marconcini M. Calculation of high-lift cascades in low pressure turbine conditions using a three-equation model. Journal of Turbomachinery, 2011, 133: 1-9
|
[1] | Ji Xiang, Wang Wei, Li Zhijian, Wu Xiangyang, Wang Xiaofang. OPTIMIZATION OF UNSTEADY CAVITATION PERFORMANCE OF AIRFOIL BASED ON MACHINE LEARNING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1054-1065. DOI: 10.6052/0459-1879-24-401 |
[2] | Yue Liangbo, Wang Bing, Gu Bin. INVERSION OF LAYERED BIOLOGICAL SOFT TISSUE PROPERTIES BASED ON METHOD OF DISPERSION CURVES AND MACHINE LEARNING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2752-2761. DOI: 10.6052/0459-1879-24-173 |
[3] | Wang Hongyue, Liu Yanfang, Du Desong, Qi Naiming. RESEARCH ON GAS FLOW CHARACTERISTICS OF BERNOULLI GRIPPER BASED ON MACHINE LEARNING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2565-2578. DOI: 10.6052/0459-1879-24-116 |
[4] | Zhao Shule, Zhang Weiwei. MACHINE LEARNING OF SKIN FRICTION DISTRIBUTION BASED ON SURFACE INVISCID FLOW FEATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2243-2258. DOI: 10.6052/0459-1879-23-615 |
[5] | Duan Zunyi, Liu Yi, Zhang Haoxiang, Chen Zhiyuan, Xu Bin, Zhu Jihong, Yan Jun. MACHINE LEARNING-BASED DESIGN OPTIMIZATION OF VARIABLE STIFFNESS FIBER REINFORCED COMPOSITES TO MINIMIZE STRUCTURAL COMPLIANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 1849-1860. DOI: 10.6052/0459-1879-23-521 |
[6] | Zhou Rui, Xiong Yukai, Chu Jielei, Kan Qianhua, Kang Guozheng, Zhang Xu. PARAMETER IDENTIFICATION OF NONLOCAL CRYSTAL PLASTIC MODEL BASED ON MACHINE LEARNING AND GENETIC ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 751-762. DOI: 10.6052/0459-1879-23-479 |
[7] | Xiao Shengpeng, Zhu Hongbo, Zhou Dai, Bao Yan. STUDY ON FLOW CHARACTERISTICS OF SOLID-LIQUID TWO-PHASE FLOW IN BEND BASED ON MACHINE LEARNING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 613-625. DOI: 10.6052/0459-1879-23-356 |
[8] | Wang Jianchun, Jin Guodong. Preface of Theme Articles on Applications of Machine Learning to Simulations and Controls in Mechanics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2613-2615. DOI: 10.6052/0459-1879-21-501 |
[9] | Wang Nianhua, Lu Peng, Chang Xinghua, Zhang Laiping. PRELIMINARY INVESTIGATION ON UNSTRUCTURED MESH GENERATION TECHNIQUE BASED ON ADVANCING FRONT METHOD AND MACHINE LEARNING METHODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 740-751. DOI: 10.6052/0459-1879-20-402 |
[10] | Xie Chenyu, Yuan Zelong, Wang Jianchun, Wan Minping, Chen Shiyi. ARTIFICIAL NEURAL NETWORK-BASED SUBGRID-SCALE MODELS FOR LARGE-EDDY SIMULATION OF TURBULENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 1-16. DOI: 10.6052/0459-1879-20-420 |
1. |
曾宇,汪洪波,连城阅,杨揖心,熊大鹏,孙明波,刘卫东. 两种SST湍流模型改进方法适用性分析. 航空学报. 2024(S1): 119-132 .
![]() | |
2. |
唐志共,朱林阳,向星皓,何磊,赵暾,王岳青,钱炜祺,袁先旭. 智能空气动力学若干研究进展及展望. 空气动力学学报. 2023(07): 1-35 .
![]() |