Citation: | Yi Min, Chang Ke, Liang Chenguang, Zhou Liucheng, Yang Yangyiwei, Yi Xin, Xu Baixiang. Computational study of evolution and fatigue dispersity of microstructures by additive manufacturing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3263-3273. DOI: 10.6052/0459-1879-21-389 |
[1] |
卢秉恒. 增材制造技术-现状与未来. 中国机械工程, 2020, 31(1): 19-23 (Lu Bingheng. Additive manufacturing-current situation and future. China Mechanical Engineering, 2020, 31(1): 19-23 (in Chinese)
|
[2] |
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题. 航空学报, 2014, 35(10): 2690-2698 (Wang Huaming. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components. Acta Aeronautica ET Astronautica Sinica, 2014, 35(10): 2690-2698 (in Chinese)
|
[3] |
顾冬冬, 张红梅, 陈洪宇等. 航空航天高性能金属材料构件激光增材制造. 中国激光, 2020, 47(5): 0500002 (Gu Dongdong, Zhang Hongmei, Chen Hongyu, et al. Laser Additive manufacturing of high-performance metallic aerospace components. Chinese Journal of Lasers, 2020, 47(5): 0500002 (in Chinese) doi: 10.3788/CJL202047.0500002
|
[4] |
陈嘉伟, 熊飞宇, 黄辰阳等. 金属增材制造数值模拟. 中国科学: 物理学 力学 天文学, 2020, 50(9): 090007 (Chen Jiawei, Xiong Feiyu, Huang Chenyang, et al. Numerical simulation on metallic additive manufacturing. Scientia Sinica Physica,Mechanica &Astronomica, 2020, 50(9): 090007 (in Chinese)
|
[5] |
王超, 徐斌, 段尊义等. 面向增材制造的应力最小化连通性拓扑优化. 力学学报, 2021, 53(4): 1070-1080 (Wang Chao, Xu Bin, Duan Zunyi, et al. Additive manufacturing-oriented stress minimization topology optimization with connectivity. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1070-1080 (in Chinese) doi: 10.6052/0459-1879-20-389
|
[6] |
秋大闯, 李多生, 叶寅等. SLM成形镍基高温合金及其数值模拟的研究进展. 功能材料, 2019, 50(03): 03049-03058 (Qiu Dachuang, Li Duosheng, Ye Yin, et al. Research progress of SLM forming nickel-based superalloys and the simulation. Journal of Functional Materials, 2019, 50(03): 03049-03058 (in Chinese)
|
[7] |
张江涛, 谭援强, 纪财源等. 增材制造中滚筒铺粉工艺参数对尼龙粉体铺展性的影响研究. 力学学报, 2021, 53(9): 2418-2428 (Zhang Jiangtao, Tan Yuanqiang, Ji Caiyuan, et al. Research on the effects of roller-spreading parameters for nylon powder spreadability in additive manufacturing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2418-2428 (in Chinese)
|
[8] |
Sahoo S, Chou K. Phase-field simulation of microstructure evolution of Ti-6Al-4V in electron beam additive manufacturing process. Additive Manufacturing, 2016, 9: 14-24 doi: 10.1016/j.addma.2015.12.005
|
[9] |
Liu PW, Ji YZ, Wang Z, et al. Investigation on evolution mechanisms of site-specific grain structures during metal additive manufacturing. Journal of Materials Processing Technology, 2018, 257: 191-202 doi: 10.1016/j.jmatprotec.2018.02.042
|
[10] |
Yang M, Wang L, Yan WT. Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening. NPJ Computatioanl Materials, 2021, 7: 56 doi: 10.1038/s41524-021-00524-6
|
[11] |
Lu LX, Sridhar N, Zhang YW. Phase field simulation of powder bed-based additive manufacturing. Acta Materialia, 2018, 144: 801-809 doi: 10.1016/j.actamat.2017.11.033
|
[12] |
Yang Y, Ragnvaldsen O, Bai Y, et al. 3D non-isothermal phase-field simulation of microstructure evolution during selective laser sintering. NPJ Computatioanl Materials, 2019, 5: 81 doi: 10.1038/s41524-019-0219-7
|
[13] |
Yang Y, Kühn P, Yi M, et al. Non-isothermal phase-field modeling of heat-melt-microstructure-coupled processes during powder bed fusion. JOM, 2020, 72(4): 1719-1733 doi: 10.1007/s11837-019-03982-y
|
[14] |
Yang Y, Oyedeji TD, Kühn P, et al. Investigation on temperature-gradient-driven effects in unconventional sintering via non-isothermal phase-field simulation. Script Materialia, 2020, 186: 152-157 doi: 10.1016/j.scriptamat.2020.05.016
|
[15] |
Yang Y, Doñate-Buendía C, Oyedeji TD, et al. Nanoparticle tracing during laser powder bed fusion of oxide dispersion strengthened steels. Materials, 2021, 14(13): 3463 doi: 10.3390/ma14133463
|
[16] |
杨阳祎玮, 易敏, 胥柏香. 粉末增材制造微结构的非等温相场模拟. 中南大学学报, 2020, 51(11): 3019-3031 (Yang Yangyiwei, Yi Min, Xu Baixiang. Non-isothermal phase-field simulation of microstructure in powder-based additive manufacturing. Journal of Central South University, 2020, 51(11): 3019-3031 (in Chinese)
|
[17] |
Lian YP, Lin S, Yan WT, et al. A parallelized three-dimensional cellular automaton model for grain growth during additive manufacturing. Computational Mechanics, 2018, 61(5): 543-558 doi: 10.1007/s00466-017-1535-8
|
[18] |
Lian YP, Gan Z, Yu C, et al. A cellular automaton finite volume method for microstructure evolution during additive manufacturing. Materials Design, 2019, 169: 107672 doi: 10.1016/j.matdes.2019.107672
|
[19] |
魏雷, 林鑫, 王猛等. 激光立体成形中熔池凝固微观组织的元胞自动机模拟. 物理学报, 2015, 64(1): 018103 (Wei Lei, Lin Xin, Wang Meng, et al. Cellular automaton simulation of the molten p o ol of laser solid forming process. Acta Physica Sinica, 2015, 64(1): 018103 (in Chinese) doi: 10.7498/aps.64.018103
|
[20] |
Yan WT, Lian YP, Yu C, et al. An integrated process–structure–property modeling framework for additive manufacturing. Computer Methods in Applied Mechanics and Engineering, 2018, 339: 184-204 doi: 10.1016/j.cma.2018.05.004
|
[21] |
Rai A, Markl M, Körner C. A coupled cellular automaton-lattice Boltzmann model for grain structure simulation during additive manufacturing. Computational Materials Science, 2016, 124: 37-48 doi: 10.1016/j.commatsci.2016.07.005
|
[22] |
Rai A, Helmer H, Körner C. Simulation of grain structure evolution during powder bed based additive manufacturing. Additive Manufacturing, 2017, 13: 124-134 doi: 10.1016/j.addma.2016.10.007
|
[23] |
Wang Z, Yan W, Liu WK, et al. Powder-scale multi-physics modeling of multi-layer multi-track selective laser melting with sharp interface capturing method. Computational Mechanics, 2019, 63(4): 649-661 doi: 10.1007/s00466-018-1614-5
|
[24] |
King W, Anderson AT, Ferencz RM, et al. Overview of modelling and simulation of metal powder bed fusion process at lawrence livermore national laboratory. Materials Science and Technology, 2015, 31(8): 957-968 doi: 10.1179/1743284714Y.0000000728
|
[25] |
Ahmadi A, Mirzaeifar A, Moghaddam NS, et al. Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: a computational framework. Materials Design, 2016, 112: 328-338 doi: 10.1016/j.matdes.2016.09.043
|
[26] |
张昭, 葛芃, 谭治军等. 激光增材制造微观结构模拟与力学性能预测. 兵器材料科学与工程, 2018, 41(1): 1-7 (Zhang Zhao, Ge Peng, Tan Zhijun, et al. Numerical simulation of microstructural evolutions and prediction of mechanical properties in laser additive manufacturing. Ordnance Material Science and Engineering, 2018, 41(1): 1-7 (in Chinese)
|
[27] |
Liu PW, Wang Z, Xiao YH, et al. Integration of phase-field model and crystal plasticity for the prediction of process-structure-property relation of additively manufactured metallic materials. International Journal of Plasticity, 2020, 128: 102670 doi: 10.1016/j.ijplas.2020.102670
|
[28] |
DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components–process, structure and properties. Progress in Materials Science, 2018, 92: 112-224 doi: 10.1016/j.pmatsci.2017.10.001
|
[29] |
Smith J, Xiong W, Yan W, et al. Linking process, structure, property, and performance for metal-based additive manufacturing: computational approaches with experimental support. Computational Mechanics, 2016, 57: 583-610 doi: 10.1007/s00466-015-1240-4
|
[30] |
Kozicki J, Donze FV. YADE-OPEN DEM: an opensource software using a discrete element method to simulate granular material. Engineering Computations, 2009, 26(7): 786-805 doi: 10.1108/02644400910985170
|
[31] |
Tonks MR, Gaston D, Millett PC, et al. An object-oriented finite element framework for multiphysics phase field simulations. Computational Materials Science, 2012, 51(1): 20-29 doi: 10.1016/j.commatsci.2011.07.028
|
[32] |
Huang Y. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Mech. Report 178. Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 1991
|
[33] |
Fatemi A, Socie DF. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(3): 149-165
|
[34] |
Mcdowell L, Berard JY. A ΔJ-based approach to biaxial fatigue. Fatigue & Fracture of Engineering Materials & Structures, 1992, 15(8): 719-741
|
[35] |
Castelluccio GM, McDowell DL. Assessment of small fatigue crack growth driving forces in single crystals with and without slip bands. International Journal of Fracture, 2012, 176(1): 49-64 doi: 10.1007/s10704-012-9726-y
|
[36] |
Castelluccio GM, McDowell DL. Effect of annealing twins on crack initiation under high cycle fatigue conditions. Journal of Materials Science, 2013, 48(6): 2376-2387 doi: 10.1007/s10853-012-7021-y
|
[37] |
Gu T, Stopka KS, Xu C, et al. Prediction of maximum fatigue indicator parameters for duplex Ti-6Al-4V using extreme value theory. Acta Materialia, 2020, 188: 504-516 doi: 10.1016/j.actamat.2020.02.009
|
[38] |
Stopka KS, Gu T, McDowell DL. Effects of algorithmic simulation parameters on the prediction of extreme value fatigue indicator parameters in duplex Ti-6Al-4V. International Journal of Fatigue, 2020, 141: 105865 doi: 10.1016/j.ijfatigue.2020.105865
|
[39] |
Musinski WD, McDowell DL. Simulating the effect of grain boundaries on microstructurally small fatigue crack growth from a focused ion beam notch through a three-dimensional array of grains. Acta Materialia, 2016, 112: 20-39 doi: 10.1016/j.actamat.2016.04.006
|
[40] |
Stopka KS, McDowell DL. Microstructure-sensitive computational multiaxial fatigue of Al 7075-T6 and duplex Ti-6Al-4V. International Journal of Fatigue, 2020, 133: 105460 doi: 10.1016/j.ijfatigue.2019.105460
|
[41] |
Stopka KS, McDowell DL. Microstructure-sensitive computational estimates of driving forces for surface versus subsurface fatigue crack formation in duplex Ti-6Al-4V and Al 7075-T6. JOM, 2020, 72(1): 28-38 doi: 10.1007/s11837-019-03804-1
|
[42] |
Miller KJ. The behaviour of short fatigue cracks and their initiation part I-a review of two recent books. Fatigue & Fracture of Engineering Materials & Structures, 1987, 10(1): 75-91
|
[43] |
Jan B, Goegebeur Y, Teugels J, et al. Statistics of Extremes: Theory and Applications. John Wiley & Sons, Ltd. 2004
|
[44] |
Kumar P, Jayaraj R, Suryawanshi T, et al. Fatigue strength of additively manufactured 316L austenitic stainless steel. Acta Materialia, 2020, 199: 225-239 doi: 10.1016/j.actamat.2020.08.033
|
[45] |
Obeidi MA, UíMhurchadha SM, Raghavendra R, et al. Comparison of the porosity and mechanical performance of 316L stainless steel manufactured on different laser powder bed fusion metal additive manufacturing machines. Journal of Materials Research and Technology, 2021, 13: 2361-2374 doi: 10.1016/j.jmrt.2021.06.027
|
[46] |
Shrestha R, Simsiriwong J, Shamsaei N. Fatigue behavior of additive manufactured 316L stainless steel parts: Effects of layer orientation and surface roughness. Additive Manufacturing, 2019, 28: 23-38 doi: 10.1016/j.addma.2019.04.011
|
[47] |
韩世伟, 石多奇, 杨晓光等. 微结构相关的高循环疲劳分散性计算方法研究. 金属学报, 2016, 52(3): 289-297 (Han Shiwei, Shi Duoqi, Yang Xiaoguang, et al. Computational study on microstructure-sensitive high cycle fatigue dispersivity. Acta Metallurgica Sinica, 2016, 52(3): 289-297 (in Chinese) doi: 10.11900/0412.1961.2015.00322
|
1. |
Min YI,Ming XUE,Peihong CONG,Yang SONG,Haiyang ZHANG,Lingfeng WANG,Liucheng ZHOU,Yinghong LI,Wanlin GUO. Machine learning for predicting fatigue properties of additively manufactured materials. Chinese Journal of Aeronautics. 2024(04): 1-22 .
![]() |
|
2. |
刘翠丽,胡剑南,李建中,石俊杰,高宣雯,于凯. 醇盐体系增材制造钛合金的电化学抛光机理. 材料与冶金学报. 2024(02): 190-196 .
![]() | |
3. |
于飞,廉艳平,李明健,高汝鑫. 金属增材制造晶体塑性有限胞元自洽聚类分析方法. 力学学报. 2024(07): 1916-1930 .
![]() | |
4. |
胡雅楠,余欢,吴圣川,奥妮,阚前华,吴正凯,康国政. 基于机器学习的增材制造合金材料力学性能预测研究进展与挑战. 力学学报. 2024(07): 1892-1915 .
![]() | |
5. |
罗诚,袁荒. 基于张量化微结构表征的筏化镍基单晶高温合金疲劳寿命评估. 力学学报. 2024(07): 2029-2050 .
![]() | |
6. |
Ya-qing Hou,Xiao-qun Li,Wei-dong Cai,Qing Chen,Wei-ce Gao,Du-peng He,Xue-hui Chen,Hang Su. Research progress in CALPHAD assisted metal additive manufacturing. China Foundry. 2024(04): 295-310 .
![]() |
|
7. |
於之杰,郭玉佩,孙汉斌,张京楠,孙侠生. 先进材料及工艺的结构完整性研究进展. 航空学报. 2024(18): 33-54 .
![]() | |
8. |
常珂,梁晨光,易敏. 基于离散元与相场法的激光选区熔化数值模拟. 计算力学学报. 2024(05): 830-836 .
![]() | |
9. |
肖庆晖,张仁嘉,刘士杰,胡文轩,吕晨晞,朱思瑛,易敏. 增材铜合金拉伸力学行为的卷积神经网络预测. 计算力学学报. 2024(05): 843-850 .
![]() | |
10. |
易敏,胡文轩. 晶体塑性模型及其在金属疲劳寿命预测中的应用. 南京航空航天大学学报. 2023(01): 12-27 .
![]() | |
11. |
叶万蓉,曾国伟,闫相木,邱乙,张博文. 3D打印金属材料疲劳实验及数值模拟研究综述. 科技资讯. 2023(02): 135-138 .
![]() | |
12. |
詹志新,高同州,刘传奇,吴圣川. 基于数据驱动的增材制造铝合金的疲劳寿命预测. 固体力学学报. 2023(03): 381-394 .
![]() | |
13. |
刘海林,易敏,王建祥,易新. 激光选区熔化铺粉过程的数值模拟及粉层表征. 力学学报. 2023(09): 1921-1938 .
![]() | |
14. |
易敏,张璇,胡文轩,周留成,刘士杰,郑大勇. 激光冲击强化改善增材制造金属疲劳性能. 航空制造技术. 2023(20): 38-49 .
![]() | |
15. |
高柏森,黄玮,王生楠,张霜银,陈先民. 增材制造Ti-6Al-4V合金断裂行为与应力三轴度关系研究. 西北工业大学学报. 2022(05): 962-969 .
![]() |