Citation: | Tian Haigang, Shan Xiaobiao, Zhang Jubin, Sui Guangdong, Xie Tao. Output characteristics investigation of airfoil-based flutter piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3016-3024. DOI: 10.6052/0459-1879-21-377 |
[1] |
Yang Z, Zhou S, Zu J, et al. High-performance piezoelectric energy harvesters and their applications. Joule, 2018, 2(4): 642-647 doi: 10.1016/j.joule.2018.03.011
|
[2] |
何燕丽, 赵翔. 曲梁压电俘能器强迫振动的格林函数解. 力学学报, 2019, 51(4): 1170-1179 (He Yanli, Zhao Xiang. Closed-form solutions for forced vibrations of curved piezoelectric energy harvesters by means of green’s functions. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1170-1179 (in Chinese)
|
[3] |
王淑云, 朱雅娜, 阚君武等. 旋磁激励式预弯梁压电俘能器建模仿真与试验. 机械工程学报, 2020, 56(14): 224-230 (Wang Shuyun, Zhu Yana, Kan Junwu, et al. Prebending-cantilever piezo-harvester excited by rotary magnet. Journal of Mechanical Engineering, 2020, 56(14): 224-230 (in Chinese) doi: 10.3901/JME.2020.14.224
|
[4] |
宋汝君, 单小彪, 杨先海等. 基于压电俘能器的流体能量俘获技术研究现状. 振动与冲击, 2019, 38(17): 244-250,275 (Song Rujun, Shan Xiaobiao, Yang Xianhai, et al. A review of fluid energy capture technology based on piezoelectric energy harvesters. Journal of Vibration and Shock, 2019, 38(17): 244-250,275 (in Chinese)
|
[5] |
樊康旗, 刘朝辉, 王连松等. 从人体行走中收集能量的鞋上压电俘能器. 光学精密工程, 2017, 25(5): 1272-1280 (Fan Kangqi, Liu Zhaohui, Wang Liansong, et al. Shoe-mounted piezoelectric energy harvester for collecting energy from human walking. Optics and Precision Engineering, 2017, 25(5): 1272-1280 (in Chinese) doi: 10.3788/OPE.20172505.1272
|
[6] |
Fan K, Liu S, Liu H, et al. Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester. Applied Energy, 2018, 216: 8-20 doi: 10.1016/j.apenergy.2018.02.086
|
[7] |
Graham A, Yuta D, Katelyn D, et al. Frequency domain analysis of droplet-based electrostatic transducers. Smart Materials and Structures, 2018, 27(7): 074007 doi: 10.1088/1361-665X/aac134
|
[8] |
Fan F, Tang W, Wang Z. Flexible nanogenerators for energy harvesting and self-powered electronics. Advanced Materials, 2016, 28(22): 4283-4305 doi: 10.1002/adma.201504299
|
[9] |
Zhao L, Chen K, Yang F, et al. The novel transistor and photodetector of monolayer mos2 based on surface-ionic-gate modulation powered by a triboelectric nanogenerator. Nano Energy, 2019, 62: 38-45 doi: 10.1016/j.nanoen.2019.05.012
|
[10] |
曹东兴, 马鸿博, 张伟. 附磁压电悬臂梁流致振动俘能特性分析. 力学学报, 2019, 51(4): 1148-1155 (Cao Dongxing, Ma Hongbo, Zhang Wei. Energy harvesting analysis of a piezoelectric cantilever beam with magnets for flow-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155 (in Chinese)
|
[11] |
王淑云, 沈亚林, 阚君武等. 刚柔复合梁压电风能采集器的试验测试与分析. 振动与冲击, 2016, 35(18): 23-27 (Wang Shuyun, Shen Yalin, Kan Junwu, et al. Test and analysis of piezoelectric wind energy harvester based on rigid-flexible composite beam. Journal of Vibration and Shock, 2016, 35(18): 23-27 (in Chinese)
|
[12] |
Arionfard H, Nishi Y. Experimental investigation on the performance of a double-cylinder flow-induced vibration (FIV) energy converter. Renewable Energy, 2019, 134: 267-275 doi: 10.1016/j.renene.2018.11.022
|
[13] |
Assi, GRS. Wake-induced vibration of tandem cylinders of different diameters. Journal of Fluids and Structures, 2014, 50: 329-339 doi: 10.1016/j.jfluidstructs.2014.07.001
|
[14] |
Pigolotti L, Mannini C, Bartoli G, et al. Critical and post-critical behaviour of two-degree-of-freedom flutter-based generators. Journal of Sound and Vibration, 2017, 404: 116-140 doi: 10.1016/j.jsv.2017.05.024
|
[15] |
李魁, 杨智春, 谷迎松等. 变势能阱双稳态气动弹性能量收集的性能增强研究. 航空学报, 2020, 41(9): 136-147 (Li Kui, Yang Zhichun, Gu Yingsong, et al. Performance enhancement of variable-potential-well bi-stable aeroelasticity energy harvesting. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 136-147 (in Chinese)
|
[16] |
Wang J, Tang L, Zhao L, et al. Efficiency investigation on energy harvesting from airflows in hvac system based on galloping of isosceles triangle sectioned bluff bodies. Energy, 2019, 172: 1066-1078 doi: 10.1016/j.energy.2019.02.002
|
[17] |
Wang J, Zhou S, Zhang Z, et al. High-performance piezoelectric wind energy harvester with y-shaped attachments. Energy Conversion and Management, 2019, 181: 645-652 doi: 10.1016/j.enconman.2018.12.034
|
[18] |
Wang Y, Inman DJ. Simultaneous energy harvesting and gust alleviation for a multifunctional composite wing spar using reduced energy control via piezoceramics. Journal of Composite Materials, 2013, 47(1): 125-146 doi: 10.1177/0021998312448677
|
[19] |
Abdelkefi A, Hajj MR. Performance enhancement of wing-based piezoaeroelastic energy harvesting through freeplay nonlinearity. Theoretical and Applied Mechanics Letters, 2013, 3(4): 041001 doi: 10.1063/2.1304101
|
[20] |
Abdelkefi A, Nayfeh AH, Hajj MR. Enhancement of power harvesting from piezoaeroelastic systems. Nonlinear Dynamics, 2012, 68(4): 531-541 doi: 10.1007/s11071-011-0234-9
|
[21] |
Kirschmeier B, Bryant M. Experimental investigation of wake-induced aeroelastic limit cycle oscillations in tandem wings. Journal of Fluids and Structures, 2018, 81: 309-324 doi: 10.1016/j.jfluidstructs.2018.04.015
|
[22] |
Wu Y, Li D, Xiang J, et al. A modified airfoil-based piezoaeroelastic energy harvester with double plunge degrees of freedom. Theoretical and Applied Mechanics Letters, 2016, 6(5): 244-247 doi: 10.1016/j.taml.2016.08.009
|
[23] |
Li K, Yang Z, Gu Y, et al. Nonlinear magnetic-coupled flutter-based aeroelastic energy harvester: Modeling, simulation and experimental verification. Smart Materials and Structures, 2019, 28(1): 015020 doi: 10.1088/1361-665X/aaede3
|
[24] |
Abdelkefi A, Vasconcellos R, Marques FD, et al. Modeling and identification of freeplay nonlinearity. Journal of Sound and Vibration, 2012, 331(8): 1898-1907 doi: 10.1016/j.jsv.2011.12.021
|
[25] |
Hafezi M, Mirdamadi HR. A novel design for an adaptive aeroelastic energy harvesting system: Flutter and power analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 41(1): 9
|
[26] |
Li D, Guo S, Xiang J. Aeroelastic dynamic response and control of an airfoil section with control surface nonlinearities. Journal of Sound and Vibration, 2010, 329(22): 4756-4771 doi: 10.1016/j.jsv.2010.06.006
|
[27] |
Abdelkefi A, Nayfeh AH, Hajj MR. Design of piezoaeroelastic energy harvesters. Nonlinear Dynamics, 2012, 68(4): 519-530 doi: 10.1007/s11071-011-0233-x
|
[28] |
Wu Y, Li D, Xiang J. Dimensionless modeling and nonlinear analysis of a coupled pitch–plunge–leadlag airfoil-based piezoaeroelastic energy harvesting system. Nonlinear Dynamics, 2018, 92(2): 153-167 doi: 10.1007/s11071-017-3954-7
|
[29] |
De Marqui C, Erturk A. Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction. Journal of Intelligent Material Systems and Structures, 2012, 24(7): 846-854
|
[30] |
Li D, Xiang J. Chaotic motions of an airfoil with cubic nonlinearity in subsonic flow. Journal of Aircraft, 2008, 45(4): 1457-1460 doi: 10.2514/1.32691
|
[31] |
Lu K, Xie Y, Zhang D, et al. Numerical investigations into the asymmetric effects on the aerodynamic response of a pitching airfoil. Journal of Fluids and Structures, 2013, 39: 76-86 doi: 10.1016/j.jfluidstructs.2013.02.001
|
[32] |
Chen Y, Nan J, Wu J. Wake effect on a semi-active flapping foil based energy harvester by a rotating foil. Computers and Fluids, 2018, 160: 51-63 doi: 10.1016/j.compfluid.2017.10.024
|
[33] |
Tian H, Shan X, Cao H, et al. A method for investigating aerodynamic load models of piezoaeroelastic energy harvester. Journal of Sound and Vibration, 2021, 502: 116084 doi: 10.1016/j.jsv.2021.116084
|
[34] |
Wu Y, Li D, Xiang J, et al. Piezoaeroelastic energy harvesting based on an airfoil with double plunge degrees of freedom: Modeling and numerical analysis. Journal of Fluids and Structures, 2017, 74: 111-129 doi: 10.1016/j.jfluidstructs.2017.06.009
|
[35] |
Abdelkefi A, Vasconcellos R, Nayfeh AH, et al. An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dynamics, 2013, 71(1): 159-173
|
[36] |
Bryant M, Garcia E. Modeling and testing of a novel aeroelastic flutter energy harvester. Journal of Vibration and Acoustics, 2011, 133(1): 011010 doi: 10.1115/1.4002788
|
1. |
张甜梦,蔡雄辉. 微流控制备聚甲基丙烯酸甲酯微球. 高分子材料科学与工程. 2024(12): 19-25 .
![]() | |
2. |
梁定新,薛春东,曾效,覃开蓉. 流动聚焦微通道中滴流模式下非牛顿液滴生成的实验研究. 实验流体力学. 2023(02): 36-45 .
![]() | |
3. |
张帅,王博,马泽遥,陈晓东. 关键构型参数对流动聚焦式微流控液滴生成的影响. 力学学报. 2023(06): 1257-1266 .
![]() | |
4. |
康宇,胡晓玮,来星辰. 聚焦型微通道内气泡生成特性数值模拟. 液压与气动. 2022(08): 171-177 .
![]() | |
5. |
郑杰,王洪,闫延鹏,崔建国. 微流控芯片液滴生成与检测技术研究进展. 应用化学. 2021(01): 1-10 .
![]() | |
6. |
韩博,李芬,贾月梅,连小洁,田海平. 流动聚焦法制备丝素蛋白微球. 生物技术. 2021(03): 300-305 .
![]() | |
7. |
梁广洋,郭钟宁,谢凯武,邓宇. 流道结构和两相流速对微液滴制备的影响. 机电工程技术. 2021(07): 119-123 .
![]() | |
8. |
穆恺,司廷. 毛细流动聚焦的实验方法及过程控制. 实验流体力学. 2020(02): 46-56 .
![]() | |
9. |
徐刚,梁帅,刘武发,郑鹏. 流动聚焦型微流控芯片微通道结构优化. 郑州大学学报(工学版). 2020(04): 87-91 .
![]() | |
10. |
韩宇,刘志军,王云峰,罗尧,刘凤霞,王晓娟,魏炜,许晓飞. T型微通道反应器内气液两相流动机制及影响因素. 力学学报. 2019(02): 441-449 .
![]() | |
11. |
刘赵淼,王文凯,逄燕. 扩展腔对方波型微混合器混合性能的影响研究. 力学学报. 2018(02): 254-262 .
![]() | |
12. |
甘云华,江政纬,李海鸽. 锥射流模式下乙醇静电喷雾液滴速度特性分析. 力学学报. 2017(06): 1272-1279 .
![]() |