EI、Scopus 收录
中文核心期刊
Tian Haigang, Shan Xiaobiao, Zhang Jubin, Sui Guangdong, Xie Tao. Output characteristics investigation of airfoil-based flutter piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3016-3024. DOI: 10.6052/0459-1879-21-377
Citation: Tian Haigang, Shan Xiaobiao, Zhang Jubin, Sui Guangdong, Xie Tao. Output characteristics investigation of airfoil-based flutter piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3016-3024. DOI: 10.6052/0459-1879-21-377

OUTPUT CHARACTERISTICS INVESTIGATION OF AIRFOIL-BASED FLUTTER PIEZOELECTRIC ENERGY HARVESTER

  • Received Date: August 04, 2021
  • Accepted Date: September 07, 2021
  • Available Online: September 08, 2021
  • Piezoelectric energy harvesters can persistently drive the low-power micro-electromechanical systems in the natural environment. For simulating two degrees of freedom plunge-pitch motions of the airfoil and harvesting effectively the aeroelastic vibration energy, this paper proposes a novel airfoil-based flutter piezoelectric energy harvester. Based on the unsteady aerodynamic model, the mathematical model of the fluid-structure-electric coupling fields of the airfoil-based flutter piezoelectric energy harvester is derived. The finite element model is established to simulate the two degrees of freedom plunge-pitch motions of the airfoil and obtain the vortex shedding and flow field characteristics around the airfoil. A wind tunnel experimental system is designed and the prototype of the piezoelectric energy harvester is fabricated. The correctness of the mathematical and simulation models is verified by using the experimental method, and the determined effects of structural parameters of the piezoelectric energy harvester on its aeroelastic vibration response and harvesting performance are analyzed numerically. The obtained results show that the output voltage obtained from theoretical analyses, simulation analyses and experimental investigation demonstrate the good consistency, which verifies the correctness of the mathematical and simulation models. The simulation analyses demonstrate that the changed pressure fields around the airfoil can be obtained, which indicate that the alternated pressure difference drives the airfoil to take place two degrees of freedom plunge-pitch motions. When the airflow velocity exceeds the flutter onset of one, the piezoelectric energy harvester takes place the flutter and occurs the limit cycle oscillations. When the eccentricity is 0.3 and the airflow velocity is 16 m/s, the maximum output voltage is up to 17.88 V and the corresponding output power is 1.278 mW. The power density is up to 7.99 mW/cm3, which achieves the superior harvesting performance over other. The research results provide an important guidance for further designing more efficient airfoil-based flutter piezoelectric energy harvesters.
  • [1]
    Yang Z, Zhou S, Zu J, et al. High-performance piezoelectric energy harvesters and their applications. Joule, 2018, 2(4): 642-647 doi: 10.1016/j.joule.2018.03.011
    [2]
    何燕丽, 赵翔. 曲梁压电俘能器强迫振动的格林函数解. 力学学报, 2019, 51(4): 1170-1179 (He Yanli, Zhao Xiang. Closed-form solutions for forced vibrations of curved piezoelectric energy harvesters by means of green’s functions. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1170-1179 (in Chinese)
    [3]
    王淑云, 朱雅娜, 阚君武等. 旋磁激励式预弯梁压电俘能器建模仿真与试验. 机械工程学报, 2020, 56(14): 224-230 (Wang Shuyun, Zhu Yana, Kan Junwu, et al. Prebending-cantilever piezo-harvester excited by rotary magnet. Journal of Mechanical Engineering, 2020, 56(14): 224-230 (in Chinese) doi: 10.3901/JME.2020.14.224
    [4]
    宋汝君, 单小彪, 杨先海等. 基于压电俘能器的流体能量俘获技术研究现状. 振动与冲击, 2019, 38(17): 244-250,275 (Song Rujun, Shan Xiaobiao, Yang Xianhai, et al. A review of fluid energy capture technology based on piezoelectric energy harvesters. Journal of Vibration and Shock, 2019, 38(17): 244-250,275 (in Chinese)
    [5]
    樊康旗, 刘朝辉, 王连松等. 从人体行走中收集能量的鞋上压电俘能器. 光学精密工程, 2017, 25(5): 1272-1280 (Fan Kangqi, Liu Zhaohui, Wang Liansong, et al. Shoe-mounted piezoelectric energy harvester for collecting energy from human walking. Optics and Precision Engineering, 2017, 25(5): 1272-1280 (in Chinese) doi: 10.3788/OPE.20172505.1272
    [6]
    Fan K, Liu S, Liu H, et al. Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester. Applied Energy, 2018, 216: 8-20 doi: 10.1016/j.apenergy.2018.02.086
    [7]
    Graham A, Yuta D, Katelyn D, et al. Frequency domain analysis of droplet-based electrostatic transducers. Smart Materials and Structures, 2018, 27(7): 074007 doi: 10.1088/1361-665X/aac134
    [8]
    Fan F, Tang W, Wang Z. Flexible nanogenerators for energy harvesting and self-powered electronics. Advanced Materials, 2016, 28(22): 4283-4305 doi: 10.1002/adma.201504299
    [9]
    Zhao L, Chen K, Yang F, et al. The novel transistor and photodetector of monolayer mos2 based on surface-ionic-gate modulation powered by a triboelectric nanogenerator. Nano Energy, 2019, 62: 38-45 doi: 10.1016/j.nanoen.2019.05.012
    [10]
    曹东兴, 马鸿博, 张伟. 附磁压电悬臂梁流致振动俘能特性分析. 力学学报, 2019, 51(4): 1148-1155 (Cao Dongxing, Ma Hongbo, Zhang Wei. Energy harvesting analysis of a piezoelectric cantilever beam with magnets for flow-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155 (in Chinese)
    [11]
    王淑云, 沈亚林, 阚君武等. 刚柔复合梁压电风能采集器的试验测试与分析. 振动与冲击, 2016, 35(18): 23-27 (Wang Shuyun, Shen Yalin, Kan Junwu, et al. Test and analysis of piezoelectric wind energy harvester based on rigid-flexible composite beam. Journal of Vibration and Shock, 2016, 35(18): 23-27 (in Chinese)
    [12]
    Arionfard H, Nishi Y. Experimental investigation on the performance of a double-cylinder flow-induced vibration (FIV) energy converter. Renewable Energy, 2019, 134: 267-275 doi: 10.1016/j.renene.2018.11.022
    [13]
    Assi, GRS. Wake-induced vibration of tandem cylinders of different diameters. Journal of Fluids and Structures, 2014, 50: 329-339 doi: 10.1016/j.jfluidstructs.2014.07.001
    [14]
    Pigolotti L, Mannini C, Bartoli G, et al. Critical and post-critical behaviour of two-degree-of-freedom flutter-based generators. Journal of Sound and Vibration, 2017, 404: 116-140 doi: 10.1016/j.jsv.2017.05.024
    [15]
    李魁, 杨智春, 谷迎松等. 变势能阱双稳态气动弹性能量收集的性能增强研究. 航空学报, 2020, 41(9): 136-147 (Li Kui, Yang Zhichun, Gu Yingsong, et al. Performance enhancement of variable-potential-well bi-stable aeroelasticity energy harvesting. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 136-147 (in Chinese)
    [16]
    Wang J, Tang L, Zhao L, et al. Efficiency investigation on energy harvesting from airflows in hvac system based on galloping of isosceles triangle sectioned bluff bodies. Energy, 2019, 172: 1066-1078 doi: 10.1016/j.energy.2019.02.002
    [17]
    Wang J, Zhou S, Zhang Z, et al. High-performance piezoelectric wind energy harvester with y-shaped attachments. Energy Conversion and Management, 2019, 181: 645-652 doi: 10.1016/j.enconman.2018.12.034
    [18]
    Wang Y, Inman DJ. Simultaneous energy harvesting and gust alleviation for a multifunctional composite wing spar using reduced energy control via piezoceramics. Journal of Composite Materials, 2013, 47(1): 125-146 doi: 10.1177/0021998312448677
    [19]
    Abdelkefi A, Hajj MR. Performance enhancement of wing-based piezoaeroelastic energy harvesting through freeplay nonlinearity. Theoretical and Applied Mechanics Letters, 2013, 3(4): 041001 doi: 10.1063/2.1304101
    [20]
    Abdelkefi A, Nayfeh AH, Hajj MR. Enhancement of power harvesting from piezoaeroelastic systems. Nonlinear Dynamics, 2012, 68(4): 531-541 doi: 10.1007/s11071-011-0234-9
    [21]
    Kirschmeier B, Bryant M. Experimental investigation of wake-induced aeroelastic limit cycle oscillations in tandem wings. Journal of Fluids and Structures, 2018, 81: 309-324 doi: 10.1016/j.jfluidstructs.2018.04.015
    [22]
    Wu Y, Li D, Xiang J, et al. A modified airfoil-based piezoaeroelastic energy harvester with double plunge degrees of freedom. Theoretical and Applied Mechanics Letters, 2016, 6(5): 244-247 doi: 10.1016/j.taml.2016.08.009
    [23]
    Li K, Yang Z, Gu Y, et al. Nonlinear magnetic-coupled flutter-based aeroelastic energy harvester: Modeling, simulation and experimental verification. Smart Materials and Structures, 2019, 28(1): 015020 doi: 10.1088/1361-665X/aaede3
    [24]
    Abdelkefi A, Vasconcellos R, Marques FD, et al. Modeling and identification of freeplay nonlinearity. Journal of Sound and Vibration, 2012, 331(8): 1898-1907 doi: 10.1016/j.jsv.2011.12.021
    [25]
    Hafezi M, Mirdamadi HR. A novel design for an adaptive aeroelastic energy harvesting system: Flutter and power analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 41(1): 9
    [26]
    Li D, Guo S, Xiang J. Aeroelastic dynamic response and control of an airfoil section with control surface nonlinearities. Journal of Sound and Vibration, 2010, 329(22): 4756-4771 doi: 10.1016/j.jsv.2010.06.006
    [27]
    Abdelkefi A, Nayfeh AH, Hajj MR. Design of piezoaeroelastic energy harvesters. Nonlinear Dynamics, 2012, 68(4): 519-530 doi: 10.1007/s11071-011-0233-x
    [28]
    Wu Y, Li D, Xiang J. Dimensionless modeling and nonlinear analysis of a coupled pitch–plunge–leadlag airfoil-based piezoaeroelastic energy harvesting system. Nonlinear Dynamics, 2018, 92(2): 153-167 doi: 10.1007/s11071-017-3954-7
    [29]
    De Marqui C, Erturk A. Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction. Journal of Intelligent Material Systems and Structures, 2012, 24(7): 846-854
    [30]
    Li D, Xiang J. Chaotic motions of an airfoil with cubic nonlinearity in subsonic flow. Journal of Aircraft, 2008, 45(4): 1457-1460 doi: 10.2514/1.32691
    [31]
    Lu K, Xie Y, Zhang D, et al. Numerical investigations into the asymmetric effects on the aerodynamic response of a pitching airfoil. Journal of Fluids and Structures, 2013, 39: 76-86 doi: 10.1016/j.jfluidstructs.2013.02.001
    [32]
    Chen Y, Nan J, Wu J. Wake effect on a semi-active flapping foil based energy harvester by a rotating foil. Computers and Fluids, 2018, 160: 51-63 doi: 10.1016/j.compfluid.2017.10.024
    [33]
    Tian H, Shan X, Cao H, et al. A method for investigating aerodynamic load models of piezoaeroelastic energy harvester. Journal of Sound and Vibration, 2021, 502: 116084 doi: 10.1016/j.jsv.2021.116084
    [34]
    Wu Y, Li D, Xiang J, et al. Piezoaeroelastic energy harvesting based on an airfoil with double plunge degrees of freedom: Modeling and numerical analysis. Journal of Fluids and Structures, 2017, 74: 111-129 doi: 10.1016/j.jfluidstructs.2017.06.009
    [35]
    Abdelkefi A, Vasconcellos R, Nayfeh AH, et al. An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dynamics, 2013, 71(1): 159-173
    [36]
    Bryant M, Garcia E. Modeling and testing of a novel aeroelastic flutter energy harvester. Journal of Vibration and Acoustics, 2011, 133(1): 011010 doi: 10.1115/1.4002788
  • Cited by

    Periodical cited type(12)

    1. 张甜梦,蔡雄辉. 微流控制备聚甲基丙烯酸甲酯微球. 高分子材料科学与工程. 2024(12): 19-25 .
    2. 梁定新,薛春东,曾效,覃开蓉. 流动聚焦微通道中滴流模式下非牛顿液滴生成的实验研究. 实验流体力学. 2023(02): 36-45 .
    3. 张帅,王博,马泽遥,陈晓东. 关键构型参数对流动聚焦式微流控液滴生成的影响. 力学学报. 2023(06): 1257-1266 . 本站查看
    4. 康宇,胡晓玮,来星辰. 聚焦型微通道内气泡生成特性数值模拟. 液压与气动. 2022(08): 171-177 .
    5. 郑杰,王洪,闫延鹏,崔建国. 微流控芯片液滴生成与检测技术研究进展. 应用化学. 2021(01): 1-10 .
    6. 韩博,李芬,贾月梅,连小洁,田海平. 流动聚焦法制备丝素蛋白微球. 生物技术. 2021(03): 300-305 .
    7. 梁广洋,郭钟宁,谢凯武,邓宇. 流道结构和两相流速对微液滴制备的影响. 机电工程技术. 2021(07): 119-123 .
    8. 穆恺,司廷. 毛细流动聚焦的实验方法及过程控制. 实验流体力学. 2020(02): 46-56 .
    9. 徐刚,梁帅,刘武发,郑鹏. 流动聚焦型微流控芯片微通道结构优化. 郑州大学学报(工学版). 2020(04): 87-91 .
    10. 韩宇,刘志军,王云峰,罗尧,刘凤霞,王晓娟,魏炜,许晓飞. T型微通道反应器内气液两相流动机制及影响因素. 力学学报. 2019(02): 441-449 . 本站查看
    11. 刘赵淼,王文凯,逄燕. 扩展腔对方波型微混合器混合性能的影响研究. 力学学报. 2018(02): 254-262 . 本站查看
    12. 甘云华,江政纬,李海鸽. 锥射流模式下乙醇静电喷雾液滴速度特性分析. 力学学报. 2017(06): 1272-1279 . 本站查看

    Other cited types(23)

Catalog

    Article Metrics

    Article views (1268) PDF downloads (237) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return