Citation: | Li Yuan, Di Qinfeng, Wang Wenchang, Hua Shuai. Evaluation method and application of foam dynamic stability in heterogeneous cores based on nuclear magnetic resonance technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2205-2213. DOI: 10.6052/0459-1879-21-278 |
[1] |
Hernández EM, Grassia P, Hokri N. Modelling foam improved oil recovery within a heterogeneous reservoir. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510: 43-52
|
[2] |
Rezaei A, Derikvand Z, Parsaei R, et al. Surfactant-silica nanoparticle stabilized N2-foam flooding: A mechanistic study on the effect of surfactant type and temperature. Journal of Molecular Liquids, 2020, 325: 110591-110601
|
[3] |
Guo F, Aryana SA. Improved sweep efficiency due to foam flooding in a heterogeneous microfluidic device. Journal of Petroleum science & Engineering, 2018, 164: 155-163
|
[4] |
Zhang Y, Liu Q, Hang Y, et al. Nanoparticles as foam stabilizer: Mechanism, control parameters and application in foam flooding for enhanced oil recovery. Journal of Petroleum Science and Engineering, 2021, 202(8): 108561
|
[5] |
Yekeen N, Manan MA, Idris AK, et al. A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery. Journal of Petroleum Science and Engineering, 2018, 164: 43-74 doi: 10.1016/j.petrol.2018.01.035
|
[6] |
Yekeen N, Idris AK, Manan MA, et al. Bulk and bubble-scale experimental studies of influence of nanoparticles on foam stability. Chinese Journal of Chemical Engineering, 2017, 25(3): 347-357 doi: 10.1016/j.cjche.2016.08.012
|
[7] |
Farhadi H, Riahi S, Ayatollahi S, et al. Experimental study of nanoparticle-surfactant stabilized CO2 foam: Stability and mobility control. Chemical Engineering Research & Design, 2016, 111: 449-460
|
[8] |
Singh R, Mohanty KK. Synergy between nanoparticles and surfactants in stabilizing foams for oil recovery. Energy & Fuels, 2015, 29(2): 467-479
|
[9] |
王莉娟, 张高勇, 董金凤等. 泡沫性能的测试和评价方法进展. 日用化学工业, 2005, 35(3): 171-173 (Wang Lijuan, Zhang Gaoyong, Dong Jinfeng, et al. Progress in test and evaluation methods for foaming performance. China Surfactant Detergent & Cosmetics, 2005, 35(3): 171-173 (in Chinese) doi: 10.3969/j.issn.1001-1803.2005.03.010
|
[10] |
张景楠, 狄勤丰, 华帅等. 泡沫驱油核磁共振实验及泡沫动态稳定性评价. 石油勘探与开发, 2018, 45(5): 853-860 (Zhang Jingnan, Di Qinfeng, Hua Shuai, et al. Nuclear magnetic resonance experiments on foam flooding and evaluation of foam dynamic stability. Petroleum Exploration and Development, 2018, 45(5): 853-860 (in Chinese)
|
[11] |
李传亮. 岩石应力敏感指数与压缩系数之间的关系式. 岩性油气藏, 2007, 19(4): 95-98 (Li Chuanliang. The relationship between rock stress sensitivity index and compressibility. Lithologic Reservoirs, 2007, 19(4): 95-98 (in Chinese) doi: 10.3969/j.issn.1673-8926.2007.04.017
|
[12] |
刘毅, 周绍骑, 韩开进等. 基于BWRS方程的压缩空气压缩因子计算. 后勤工程学院学报, 2014, 30(4): 66-71 (Liu Yi, Zhou Shaoqi, Han Kaijin, et al. Calculation of compressed air compression factor based on BWRS equation. Journal of Logistics Engineering Institute, 2014, 30(4): 66-71 (in Chinese) doi: 10.3969/j.issn.1672-7843.2014.04.013
|
[13] |
狄勤丰, 张景楠, 华帅等. 聚合物-弱凝胶调驱核磁共振可视化实. 石油勘探与开发, 2017, 44(2): 270-274 (Di Qinfeng, Zhang Jingnan, Hua Shuai, et al. Visualization experiments on polymer-weak gel profile control and displacement by NMR technique. Petroleum Exploration and Development, 2017, 44(2): 270-274 (in Chinese)
|
[14] |
Wei B, Zhang X, Wu R, et al. Pore-scale monitoring of CO2 and N2 flooding processes in a tight formation under reservoir conditions using nuclear magnetic resonance (NMR): A case study. Fuel, 2019, 246: 34-41 doi: 10.1016/j.fuel.2019.02.103
|
[15] |
Li Yuan, Di Qinfeng, Hua Shuai, et al. Investigation of the blocking effect of foam with and without nanoparticles in cores with different permeabilities. Energy & Fuels, 2021, 35(6): 4815-4822
|
[16] |
狄勤丰, 华帅, 顾春元等. 岩心微流动的核磁共振可视化研究. 实验流体力学, 2016, 30(3): 98-103 (Di Qinfeng, Hua Shuai, Gu Chunyuan, et al. Nuclear magnetic resonance visualization of core microflow. Experimental Fluid Mechanics, 2016, 30(3): 98-103 (in Chinese)
|
[17] |
Li Yuan, Di Qinfeng, Hua Shuai, et al. Visualization of foam migration characteristics and displacement mechanism in heterogeneous cores. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607: 125336-125344 doi: 10.1016/j.colsurfa.2020.125336
|
[18] |
狄勤丰, 贾欣昌, 罗强等. 岩心驱替实验中基于LF-NMR的油、水动态定标方法及应用. 石油钻采工艺, 2020, 42(2): 181-188 (Di Qinfeng, Jia Xinchang, Luo Qiang, et al. LF-NMR-based oil and water dynamic calibration method and application in core displacement experiment. Petroleum Drilling &Production Technology, 2020, 42(2): 181-188 (in Chinese)
|
[19] |
李莺歌, 张娜, 吕伟峰等. 多孔介质内泡沫渗流过程入口效应的数值研究. 工程热物理学报, 2017, 38(9): 1960-1964 (Li Yingge, Zhang Na, Lyu Weifeng, et al. Numerical study on the inlet effect of foam seepage process in porous media. Journal of Engineering Thermophysics, 2017, 38(9): 1960-1964 (in Chinese)
|
[20] |
Almajid MM, Kovscek AR. Pore-level mechanics of foam generation and coalescence in the presence of oil. Adv. Colloid Interface, 2016, 233: 65-82 doi: 10.1016/j.cis.2015.10.008
|
[21] |
李兆敏, 张习斌, 李松岩等. 氮气泡沫驱气体窜流特征实验研究. 中国石油大学学报(自然科学版), 2016, 40(5): 96-103 (Li Zhaomin, Zhang Xibin, Li Songyan, et al. Experimental study on gas channeling characteristics of nitrogen foam flooding. Journal of China University of Petroleum (Natural Science)
|
[22] |
Li YL, Li HB, Wang X, et al. Experimental study and field demonstration of air-foam flooding for heavy oil EOR. Journal of Petroleum Science and Engineering, 2020, 185(5): 106659
|
[23] |
Sun HQ, Wang ZW, Sun YH, et al. Laboratory evaluation of an efficient low interfacial tension foaming agent for enhanced oil recovery in high temperature flue-gas foam flooding. Journal of Petroleum Science and Engineering, 2020, 195(5): 107580
|
[24] |
Lu M, Liu Z, Jia L, et al. Visualizing pore-scale foam flow in micromodels with different permeabilities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600: 124923 doi: 10.1016/j.colsurfa.2020.124923
|
[25] |
Kong D, Li Y, Yu M, et al. Experimental investigation on block and transport characteristics of foam in porous media for enhanced oil recovery processes. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2019, 570: 22-31
|
[26] |
Kovscek AR, Bertin HJ. Foam mobility in heterogeneous porous media. Transport in Porous Media, 2003, 52(1): 17-35 doi: 10.1023/A:1022312225868
|
[27] |
Singh R, Mohanty KK. Foam flow in a layered, heterogeneous porous medium: A visualization study. Fuel, 2017, 197: 58-69 doi: 10.1016/j.fuel.2017.02.019
|
[28] |
Kapetas L, Bonnieu SV, Danelis S, et al. Effect of temperature on foam flow in porous media. Journal of Industrial & Engineering Chemistry, 2016, 36: 229-237
|
[29] |
Zhao J, Torabi F, Yang J. The synergistic role of silica nanoparticle and anionic surfactant on the static and dynamic CO2 foam stability for enhanced heavy oil recovery: An experimental study. Fuel, 2020, 287(22): 119443
|
[30] |
Babamahmoudi S, Riahi S. Application of nano particle for enhancement of foam stability in the presence of crude oil: Experimental investigation. Journal of Molecular Liquids, 2018, 36: 229-237
|
[31] |
王玉斗, 李茂辉, 温科扬等. 泡沫渗流机理及渗流模型研究. 石油钻探技术, 2010, 38(4): 104-107 (Wang Yudou, Li Maohui, Wen Keyang, et al. Study on foam seepage mechanism and seepage model. Petroleum Drilling Technology, 2010, 38(4): 104-107 (in Chinese)
|
[32] |
Eftekhari AA, Farajzadeh R. Effect of foam on liquid phase mobility in porous media. Scientific Reports, 2017, 7: 743870-743878
|