Citation: | Zhang Liqi, Yue Chengyu, Zhao Yonghui. Parameter-varying aeroelastic modeling and analysis for a variable-sweep wing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3134-3146. DOI: 10.6052/0459-1879-21-275 |
[1] |
Weisshaar TA. Morphing aircraft systems: historical perspectives and future challenges. Journal of Aircraft, 2013, 50(2): 337-353 doi: 10.2514/1.C031456
|
[2] |
Ajaj RM, Parancheerivilakkathil MS, Amoozgar MR, et al. Recent developments in the aeroelasticity of morphing aircraft. Progress in Aerospace Sciences, 2021, 120: 1-29
|
[3] |
Ajaj RM, Beaverstock CS, Friswell MI. Morphing aircraft: the need for a new design philosophy. Aerospace and Technology, 2016, 49: 154-166
|
[4] |
Zhao Y, Hu H. Prediction of transient responses of a folding wing during the morphing process. Aerospace Science and Technology, 2013, 24(1): 89-94 doi: 10.1016/j.ast.2011.09.001
|
[5] |
Huang R, Yang Z, Yao X, et al. Parameterized modeling methodology for efficient aeroservoelastic analysis of a morphing wing. AIAA Journal, 2019, 57(12): 5543-5552 doi: 10.2514/1.J058211
|
[6] |
Hu W, Yang Z, Gu Y. Aeroelastic study for folding wing during the morphing process. Journal of Sound and Vibration, 2016, 365: 216-229 doi: 10.1016/j.jsv.2015.11.043
|
[7] |
Xu H, Han J, Yun H, et al. Calculation of the hinge moments of a folding wing aircraft during the flight-folding process. International Journal of Aerospace Engineering, 2019, 2019: 9362629
|
[8] |
詹玖榆, 周兴华, 黄锐. 基于流形切空间插值的折叠翼参数化气动弹性建模. 力学学报, 2021, 53(3): 1103-1113 (Zhan Jiuyu, Zhou Xinghua, Huang Rui. Parametric aeroelastic modeling of folding wing based on manifold tangent space interpolation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 1103-1113 (in Chinese)
|
[9] |
刘营, 李鸿光, 李韵等. 基于子结构的参数化模型降阶方法. 振动与冲击, 2020, 39(16): 148-154 (Liu Yin, Li Hongguang, Li Yun, et al. Acomponent-based parametric model order reduction method. Journal of Vibration and Shock, 2020, 39(16): 148-154 (in Chinese)
|
[10] |
Lovera M, Novara C, Santos PD, et al. Guest editorial special issue on applied LPV modeling and identification. Control Systems Technology IEEE Transactions, 2011, 19(1): 1-4 doi: 10.1109/TCST.2010.2090416
|
[11] |
Lee L, Poolla L. Identification of linear parameter-varying systems using nonlinear programming. Cite Seer, 1999, 121(1): 71-78
|
[12] |
Mocsányi RD, Takarics B, Vanek B. Grid and polytopic LPV modeling of aeroelastic aircraft for co-design. IFAC-Papers OnLine, 2020, 53(2): 5725-5730 doi: 10.1016/j.ifacol.2020.12.1600
|
[13] |
王东风, 朱为琦. 线性参数变化系统建模与控制研究进展. 自动化学报, 2021, 47(4): 780-790 (Wang Dongfeng, Zhu Weiqi. Advances in modeling and control of linear parameter varying systems. Automatic Generation of Computer Animation, 2021, 47(4): 780-790 (in Chinese)
|
[14] |
Boef PD, Tóth R, Schoukens M. On behavioral interpolation in local LPV system identification. IFAC-Papers OnLine, 2019, 52(28): 20-25 doi: 10.1016/j.ifacol.2019.12.341
|
[15] |
Lovera M, Bergamasco M, Casella F. LPV Modelling and Identification: An Overview. Heidelberg: Springer, 2013
|
[16] |
Balas GJ. Linear parameter-varying control and its application to a turbofan engine. International Journal of Robust and Nonlinear Control, 2002, 12(9): 763-796 doi: 10.1002/rnc.704
|
[17] |
Paige C. Properties of numerical algorithms related to computing controllability. Automatic Control IEEE Transactions, 1981, 26(1): 130-138 doi: 10.1109/TAC.1981.1102563
|
[18] |
Wassink MG, Wal M, Scherer C, et al. LPV control for a wafer stage: beyond the theoretical solution. Control Engineering Practice, 2005, 13(2): 231-245 doi: 10.1016/j.conengprac.2004.03.008
|
[19] |
Paijmans B, Symens W, Brussel HV, et al. Identification of interpolating affine LPV models for mechatronic systems with one varying parameter. European Journal of Control, 2008, 14(1): 16-29 doi: 10.3166/ejc.14.16-29
|
[20] |
Caigny JD, Camino JF, Swevers J. Interpolating model identification for SISO linear parameter-varying systems. Mechanical Systems and Signal Processing, 2009, 23(8): 2395-2417
|
[21] |
Caigny JD, Camino JF, Swevers J. Interpolation-based modeling of MIMO LPV systems. IEEE Transactions on Control Systems Technology, 2010, 19(1): 46-63
|
[22] |
Krolick WC, Shu JI, Wang Y, et al. State consistence of datadriven reduced order models for parametric aeroelastic analysis. SN Applied Sciences, 2021, 3(2): 267 doi: 10.1007/s42452-021-04252-w
|
[23] |
Goizueta N, Wynn A, Palacios R. Parametric Krylov-based order reduction of aircraft aeroelastic models//AIAA Scitech 2021 Forum, Virtual Event, 2021
|
[24] |
Albano E, Hodden WP. A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. AIAA Journal, 1969, 7(2): 279-285 doi: 10.2514/3.5086
|
[25] |
赵永辉, 黄锐. 高等气动弹性力学与控制. 北京: 科学出版社, 2015
Zhao Yonghui, Huang Rui. Advanced Aeroelasticity and Control. Beijing: China Science Publishing Press, 2015 (in Chinese)
|
[26] |
Poussot-Vassal C, Roos C. Generation of a reduced-order LPV/LFT model from a set of large-scale MIMO LTI flexible aircraft models. Control Engineering Practice, 2012, 20(9): 919-930
|
[27] |
Alkhoury Z, Petreczky M, Mercere G. Comparing global input-output behavior of frozen-equivalent LPV state-space models. IFAC-Papers OnLine, 2017, 50(1): 9766-9771
|
[28] |
Burkard R, Dell'Amico M, Martello S. Assignment problems// SIAM, Philadelphia, USA, 2009
|
[29] |
Jonker R, Volgenant A. A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing, 1987, 38(4): 325-340
|
[30] |
Hoblit FM. Gust Loads on Aircraft: Concepts and Applications. Washington DC: AIAA, 1989
|
[31] |
Zhao Y, Yue C, Hu H. Gust load alleviation on a large transport airplane. Journal of Aircraft, 2016, 53(6): 1932-1946
|
[32] |
ZONA Technology. ZAERO User’s Manual. Ver. 8.5, Scottsdale, USA, 2011
|
[1] | Wan Yunyi, Huang Rui, Liu Haojie. TRANSONIC FLUTTER ANALYSIS OF A MORPHING WING VIA DATA DRIVEN METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(2): 523-534. DOI: 10.6052/0459-1879-24-475 |
[2] | Li Kai, Yang Jingyuan, Gao Chuanqiang, Ye Kun, Zhang Weiwei. STATIC AEROELASTIC ANALYSIS BASED ON PROPER ORTHOGONAL DECOMPOSITION AND SURROGATE MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 299-308. DOI: 10.6052/0459-1879-22-523 |
[3] | Zhan Jiuyu, Zhou Xinhua, Huang Rui. PARAMETRIC AEROELASTIC MODELING OF FOLDING WING BASED ON MANIFOLD TANGENT SPACE INTERPOLATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1103-1113. DOI: 10.6052/0459-1879-20-376 |
[4] | Zhang Jiaming, Yang Zhijun, Huang Rui. REDUCED-ORDER MODELING FOR AEROELASTIC SYSTEMS VIA NONLINEAR STATE-SPACE IDENTIFICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 150-161. DOI: 10.6052/0459-1879-19-287 |
[5] | Yang Zhijun, Huang Rui, Liu Haojie, Zhao Yonghui, Hu Haian, Wang Le. AEROELASTIC MODEL OF REDUCED-ORDER FOR A SLENDER MISSILE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 517-527. DOI: 10.6052/0459-1879-16-358 |
[6] | Xia Wei, Feng Haocheng. AEROELASTIC FLUTTER OF POST-BUCKLED FUNCTIONALLY GRADED PANELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 609-614. DOI: 10.6052/0459-1879-15-361 |
[7] | Dawei Chen, Guowei Yang. Static aeroelastic analysis of a flying-wing using different models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 469-479. DOI: 10.6052/0459-1879-2009-4-2008-042 |
[8] | Gust response analysis using cfd-based reduced order models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5): 593-598. DOI: 10.6052/0459-1879-2008-5-2007-357 |
[9] | Simulation of Supersonic or Hypersonic Aeroelasticity Basing on Local Piston Theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(5): 632-639. DOI: 10.6052/0459-1879-2005-5-2004-263 |
[10] | WIND TUNNEL AEROELASTIC MODELLING OF THE CHINESE CENTRALTVTOWER[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(1): 10-17. DOI: 10.6052/0459-1879-1995-1-1995-400 |