Citation: | Huang Zhongmin, Xie Zhen, Zhang Yishen, Peng Linxin. Deflection-bending moment coupling neural network method for the bending problem of thin plates with in-plane stiffness gradient. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2541-2553 doi: 10.6052/0459-1879-21-273 |
[1] |
徐芝纶. 弹性力学简明教程. 北京: 高等教育出版社, 2013
(Xu Zhilun. A Concise Course in Elasticity. Beijing: Higher Education Press, 2013 (in Chinese))
|
[2] |
于天崇, 聂国隽, 仲政. 变刚度矩形板弯曲问题的Levy解. 力学季刊, 2012, 33(1): 53-59 (Yu Tianchong, Nie Guojun, Zhong Zheng. Levy-type solution for the bending of rectangular plates with variable stiffness. Chinese Quarterly of Mechanics, 2012, 33(1): 53-59 (in Chinese) doi: 10.3969/j.issn.0254-0053.2012.01.008
|
[3] |
朱竑祯, 王纬波, 高存法等. 面内变刚度功能梯度圆形薄板的轴对称弯曲. 船舶力学, 2018, 22(11): 1364-1375 (Zhu Hongzhen, Wang Weibo, Gao Cunfa, et al. Axisymmetric bending of functionally graded thin circular plates with in-plane stiffness gradient. Journal of Ship Mechanics, 2018, 22(11): 1364-1375 (in Chinese) doi: 10.3969/j.issn.1007-7294.2018.11.006
|
[4] |
何建璋, 褚福运, 仲政等. 面内变刚度矩形薄板自由振动问题的辛弹性分析. 同济大学学报(自然科学版), 2013, 41(9): 1310-1317 (He Jianzhang, Chu Fuyun, Zhong Zheng, et al. Symplectic elasticity approach for free vibration of a rectangular plate with in-plane material inhomogeneity. Journal of Tongji University (Natural Science)
|
[5] |
Santare MH, Lambros J. Use of graded finite elements to model the behavior of nonhomogeneous materials. Journal of Applied Mechanics, 2000, 67(4): 819-822 doi: 10.1115/1.1328089
|
[6] |
Kim JH, Paulino GH. Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. Journal of Applied Mechanics, 2002, 69(4): 502-514
|
[7] |
黄立新, 姚祺, 张晓磊等. 基于分层法的功能梯度材料有限元分析. 玻璃钢/复合材料, 2013, 2: 43-48 (Huang Lixin, Yao Qi, Zhang Xiaolei, et al. Finite element analysis of functionally graded materials based on layering method. Composites Science and Engineering, 2013, 2: 43-48 (in Chinese)
|
[8] |
田云德, 秦世伦. 梯度厚板热应力分层计算方法的改进. 计算力学学报, 2009, 26(6): 961-965 (Tian Yunde, Qin Shilun. The improvement of stratified method about thermal stress of functionally gradient material thick plates. Chinese Journal of Computational Mechanics, 2009, 26(6): 961-965 (in Chinese)
|
[9] |
Lee H, Kang IS. Neural algorithm for solving differential equations. Journal of Computational Physics, 1990, 91(1): 110-131 doi: 10.1016/0021-9991(90)90007-N
|
[10] |
Lagaris IE, Likas A, Fotiadis DI. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 1998, 9(5): 987-1000
|
[11] |
Eukinan W, Yu B. The deep ritz method: a deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 2018, 6(1): 1-12 doi: 10.1007/s40304-018-0127-z
|
[12] |
Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 2019, 378: 686-707 doi: 10.1016/j.jcp.2018.10.045
|
[13] |
Sirignano JA, Spiliopoulos K. DGM: A deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 2018, 375: 1339-1364 doi: 10.1016/j.jcp.2018.08.029
|
[14] |
Samaniego E, Anitescu C, Goswami S, et al. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 2020: 362
|
[15] |
瞿同明, 冯云田, 王孟琦等. 基于深度学习和细观力学的颗粒材料本构关系研究. 力学学报, 2021, 53(7): 1-12 (Qu Tongming, Feng Yuntian, Wang Mengqi, et al. Constitutive relations of granular materials by integrating micromechanical knowledge with deep learning. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1-12 (in Chinese)
|
[16] |
谢晨月, 袁泽龙, 王建春等. 基于人工神经网络的湍流大涡模拟方法. 力学学报, 2021, 53(1): 1-16 (Xie Chenyue, Yuan Zelong, Wang Jianchun, et al. Artificial neural network-based subgrid-scale models for large-eddy simulation of turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 1-16 (in Chinese)
|
[17] |
刘宇翔, 王东东, 樊礼恒等. 基于卷积神经网络的无网格形函数影响域优化研究. 固体力学学报, 2021, 42(3): 302-319 (Liu Yuxiang, Wang Dongdong, Fan Liheng, et al. A CNN-based approach for optimizing support selection of meshfree methods. Chinese Journal of Solid Mechanics, 2021, 42(3): 302-319 (in Chinese)
|
[18] |
郭宏伟, 庄晓莹. 采用两步优化器的深度配点法与深度能量法求解薄板弯曲问题. 固体力学学报, 2021, 42(3): 249-266 (Guo Hongwei, Zhuang Xiaoying. The application of deep collocation method and deep energy method with a two-step optimizer in the bending analysis of kirchhoff thin plate. Chinese Journal of Solid Mechanics, 2021, 42(3): 249-266 (in Chinese)
|
[19] |
陈豪龙, 柳占立. 基于数据驱动模型求解热传导反问题. 计算力学学报, 2021, 38(3): 272-279 (Chen Haolong, Liu Zhanli. Solving the inverse heat conduction problem based on data driven model. Chinese Journal of Computational Mechanics, 2021, 38(3): 272-279 (in Chinese)
|
[20] |
Cai Z, Chen J, Liu M, et al. Deep least-squares methods:an unsupervised learning-based numerical method for solving elliptic PDEs. Journal of Computational Physics, 2020: 420
|
[21] |
Tang SQ, Yang Y. Why neural networks apply to scientific computing? Theoretical and Applied Mechanics Letters, 2021 (in press)
|
[22] |
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. Journal of Machine Learning Research, 2010, 9: 249-256
|