Citation: | Jin Hao, Yu Shuo. CDM-XFEM method for crack calculation considered plastic dissipation of concrete. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2790-2799. DOI: 10.6052/0459-1879-21-272 |
[1] |
徐纪鹏, 董新龙, 付应乾等. 不同加载边界下混凝土巴西劈裂过程及强度的DIC实验分析. 力学学报, 2020, 52(3): 864-876 (Xu Jipeng, Dong Xinlong, Fu Yingqian, et al. Experimental analysis of process and tensile strength for concrete Brazilian splitting test with different loading boundaries by DIC method. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 864-876 (in Chinese) doi: 10.6052/0459-1879-19-303
|
[2] |
吴建营, 陈万昕, 黄羽立. 基于统一相场理论的早龄期混凝土化-热-力多场耦合裂缝模拟与抗裂性能预测. 力学学报, 2021, 53(5): 1367-1382 (Wu Jianying, Chen Wanxin, Huang Yuli. Computational modeling of shrinkage induced cracking in early-age concrete based on the unified phase-field theory. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1367-1382 (in Chinese) doi: 10.6052/0459-1879-21-020
|
[3] |
Yu S, Jin H. Modeling of the corrosion-induced crack in concrete contained transverse crack subject to chloride ion penetration. Construction and Building Materials, 2020, 258: 119645 doi: 10.1016/j.conbuildmat.2020.119645
|
[4] |
余朔, 金浩, 毕湘利. 荷载裂缝几何形态对管片外排钢筋锈层分布的影响. 工程力学, 2020, 37(4): 118-128 (Yu Shuo, Jin Hao, Bi Xiangli. Effect of geometry form of load crack on rust layer distribution of outside steel in segment. Engineering Mechanics, 2020, 37(4): 118-128 (in Chinese)
|
[5] |
Simone A, Wells G, Sluys L. From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Computer Methods in Applied Mechanics and Engineering, 2003, 192: 4581-4607 doi: 10.1016/S0045-7825(03)00428-6
|
[6] |
Li X, Chen J. An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 744-759 doi: 10.1016/j.cma.2016.11.029
|
[7] |
Tamayo E, Rodriguez A. A new continuous–discontinuous damage model: Cohesive cracks via an accurate energy-transfer process. Theoretical and Applied Fracture Mechanics, 2014, 69: 90-101 doi: 10.1016/j.tafmec.2013.11.009
|
[8] |
Challamel N. A variationally based nonlocal damage model to predict diffuse microcracking evolution. International Journal of Mechanical Sciences, 2010, 52: 1783-1800 doi: 10.1016/j.ijmecsci.2010.09.012
|
[9] |
李忠友, 刘元雪, 姚志华等. 基于能量耗散原理的混凝土力学损伤模型. 土木工程学报, 2019, 52(S1): 23-30 (Li Zhongyou, Liu Yuanxue, Yao Zhihua, et al. Mechanical damage model for concrete based on energy dissipation. China Civil Engineering Journal, 2019, 52(S1): 23-30 (in Chinese)
|
[10] |
Vilppo J, Kouhia R, Hartikainen J, et al. Anisotropic damage model for concrete and other quasi-brittle materials. International Journal of Solids and Structures, 2021, 225: 111048 doi: 10.1016/j.ijsolstr.2021.111048
|
[11] |
Poliotti M, Bairan J. A new concrete plastic-damage model with an evolutive dilatancy parameter. Engineering Structures, 2019, 189: 541-549 doi: 10.1016/j.engstruct.2019.03.086
|
[12] |
Pereira L, Weerheijm B, Sluys L. A numerical study on crack branching in quasi-brittle materials with a new effective rate-dependent nonlocal damage model. Engineering Fracture Mechanics, 2017, 182: 689-707 doi: 10.1016/j.engfracmech.2017.06.019
|
[13] |
Xia X, Chen F, Gu X, et al. Interfacial debonding constitutive model and XFEM simulation for mesoscale concrete. Computers and Structures, 2021, 242: 106373 doi: 10.1016/j.compstruc.2020.106373
|
[14] |
杨涛, 邹道勤. 基于XFEM的钢筋混凝土梁开裂数值模拟. 浙江大学学报(工学版), 2013, 47(3): 495-501 (Yang Tao, Zou Daoqin. Numerical simulation of crack growth of reinforced concrete beam based on XFEM. Journal of Zhejiang University (Engineering Science)
|
[15] |
Agathos K, Ventura G, Chatzi E, et al. Stable 3D XFEM/vector-level sets for non-planar 3D crack propagation and comparison of enrichment schemes. International Journal for Numerical Methods in Engineering, 2017, 113: 252-276
|
[16] |
Schaetzer M, Fries T. Loaded crack surfaces in two and three dimensions with XFEM. Applied Mathematical Modelling, 2020, 78: 863-885 doi: 10.1016/j.apm.2019.10.020
|
[17] |
Haghani M, Neya B, Ahmadi M, et al. Combining XFEM and time integration by α-method for seismic analysis of dam-foundation-reservoir. Theoretical and Applied Fracture Mechanics, 2020, 109: 102752 doi: 10.1016/j.tafmec.2020.102752
|
[18] |
Cervera M, Chiumenti M. Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique. Computer Methods in Applied Mechanics and Engineering, 2006, 196: 304-320 doi: 10.1016/j.cma.2006.04.008
|
[19] |
Jirásek M, Grassl P. Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models. Engineering Fracture Mechanics, 2008, 75: 1921-1943 doi: 10.1016/j.engfracmech.2007.11.010
|
[20] |
Slobbe A, Hendriks M, Rots J. Systematic assessment of directional mesh bias with periodic boundary conditions: Applied to the crack band model. Engineering Fracture Mechanics, 2013, 109: 186-208 doi: 10.1016/j.engfracmech.2013.06.005
|
[21] |
Faron A, Rombach G. Simulation of crack growth in reinforced concrete beams using extended finite element method. Engineering Failure Analysis, 2020, 116: 104698 doi: 10.1016/j.engfailanal.2020.104698
|
[22] |
Roth S, Léger P, Soulaimani A. Strongly coupled XFEM formulation for non-planar three-dimensional simulation of hydraulic fracturing with emphasis on concrete dams. Computer Methods in Applied Mechanics and Engineering, 2020, 363: 112899 doi: 10.1016/j.cma.2020.112899
|
[23] |
Comi C, Mariani S, Perego U. An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31: 213-238 doi: 10.1002/nag.537
|
[24] |
Jin W, Arson C. XFEM to couple nonlocal micromechanics damage with discrete mode I cohesive fracture. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112617 doi: 10.1016/j.cma.2019.112617
|
[25] |
Pandey V, Singh I, Mishra B, et al. A new framework based on continuum damage mechanics and XFEM for high cycle fatigue crack growth simulations. Engineering Fracture Mechanics, 2019, 206: 172-200 doi: 10.1016/j.engfracmech.2018.11.021
|
[26] |
Serpieri R, Albarella M, Sacco E. A 3D two-scale multiplane cohesive-zone model for mixed-mode fracture with finite dilation. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 857-888 doi: 10.1016/j.cma.2016.10.021
|
[27] |
Heidari-Rarani M, Sayedain M. Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches. Theoretical and Applied Fracture Mechanics, 2019, 103: 102246 doi: https://doi.org/10.1016/j.tafmec.2019.102246
|
[28] |
Venzal V, Morel S, Parent T, et al. Frictional cohesive zone model for quasi-brittle fracture: Mixed-mode and coupling between cohesive and frictional behaviors. International Journal of Solids and Structures, 2020, 198: 17-30 doi: 10.1016/j.ijsolstr.2020.04.023
|
[29] |
Roth S, Léger P, Soulaimani A. A combined XFEM–damage mechanics approach for concrete crack propagation. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 923-955 doi: 10.1016/j.cma.2014.10.043
|
[30] |
Bobinski J, Tejchman J, et al. A coupled constitutive model for fracture in plain concrete based on continuum theory with non-local softening and eXtended Finite Element Method. Finite Elements in Analysis and Design, 2016, 114: 1-21 doi: 10.1016/j.finel.2016.02.001
|
[31] |
Wang Y, Waisman H. From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering, 2016, 299: 57-89 doi: 10.1016/j.cma.2015.10.019
|
[32] |
Omidi O, Lotfi V. Continuum large cracking in a rate-dependent plastic-damage model for cyclic-loaded concrete structures. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37: 1363-1390 doi: 10.1002/nag.2093
|
[33] |
Ahmed B, Voyiadjis G, Park T. Damaged plasticity model for concrete using scalar damage variables with a novel stress decomposition. International Journal of Solids and Structures, 2020, 191: 56-75
|
[34] |
Pass M, Schreurs P, Brekelmans W. A continuum approach to brittle and fatigue damage: Theory and numerical procedures. International Journal of Solids and Structures, 1993, 30(4): 579-599 doi: 10.1016/0020-7683(93)90189-E
|
[35] |
Gunn R. Non-linear analysis of arch dams including an anisotropic damage mechanics based constitutive model for concrete. [PhD Thesis]. England: University of Brighton, 1998
|
[36] |
Jirásek M, Desmorat R. Localization analysis of nonlocal models with damage-dependent nonlocal interaction. International Journal of Solids and Structures, 2019, 174-175: 1-17 doi: 10.1016/j.ijsolstr.2019.06.011
|
[37] |
Hatzigeorgiou G, Beskos D, Theodorakopoulos D, et al. A simple concrete damage model for dynamic FEM applications. International Journal of Computational Engineering Science, 2001, 2(2): 267-286 doi: 10.1142/S1465876301000325
|
[38] |
Nikolakopoulos K, Crete J, Longere P. Volume averaging based integration method in the context of XFEM-cohesive zone model coupling. Mechanics Research Communications, 2020, 104: 103485 doi: 10.1016/j.mechrescom.2020.103485
|
[39] |
Santos F, Sousa J. A viscous-cohesive model for concrete fracture in quasi-static loading rate. Engineering Fracture Mechanics, 2020, 228: 106893 doi: 10.1016/j.engfracmech.2020.106893
|
[40] |
魏木生, 李莹, 赵建立. 广义最小二乘问题的理论和计算, 第2版. 北京: 科学出版社, 2020
(Wei Musheng, Li Ying, Zhao Jianli. Theory and Calculation of Generalized Least Squares Problem, the second edition. Beijing: Science Press, 2020 (in Chinese))
|
[41] |
Sadeghirad A, Chopp D, Ren X, et al. A novel hybrid approach for level set characterization and tracking of non-planar 3D cracks in the extended finite element method. Engineering Fracture Mechanics, 2016, 160: 1-14 doi: 10.1016/j.engfracmech.2016.03.027
|
[42] |
Gravouil A, Moes N, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets—Part II: Level set update. International Journal for Numerical Methods in Engineering, 2002, 53: 2569-2586 doi: 10.1002/nme.430
|
[43] |
Peng D, Merriman B, Osher S, et al. A PDE-based fast local level set method. Journal of Computational Physics, 1999, 155(2): 410-438 doi: 10.1006/jcph.1999.6345
|
[44] |
Colombo D, Massin P. Fast and robust level set update for 3D non-planar X-FEM crack propagation modelling. Computer Methods in Applied Mechanics and Engineering, 2011, 200: 2160-2180 doi: 10.1016/j.cma.2011.03.014
|
[45] |
Nooru-Mohamed M. Mixed-mode fracture of concrete: An experimental approach. [PhD Thesis]. Netherlands : Technische Universiteit, 1992
|
[46] |
Shi J, Chopp D, Lua J, et al. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Engineering Fracture Mechanics, 2010, 77: 2840-2863 doi: 10.1016/j.engfracmech.2010.06.009
|
[47] |
Yin Y, Ren Q, Shen L. Study on the effect of aggregate distribution on mechanical properties and damage cracks of concrete based on multifractal theory. Construction and Building Materials, 2020, 262: 120086 doi: 10.1016/j.conbuildmat.2020.120086
|
[48] |
Ghosh S, Dhang N, Deb A. Influence of aggregate geometry and material fabric on tensile cracking in concrete. Engineering Fracture Mechanics, 2020, 239: 107321 doi: 10.1016/j.engfracmech.2020.107321
|
[49] |
Nitka M, Tejchman J. Meso-mechanical modelling of damage in concrete using discrete element method with porous ITZs of defined width around aggregates. Engineering Fracture Mechanics, 2020, 231: 107029 doi: 10.1016/j.engfracmech.2020.107029
|
[1] | Zhang Tianhui, Liu Zhifang, Lei Jianyin, Wang Zhihua, Li Shiqiang. PLASTIC DYNAMIC RESPONSE AND ENERGY DISSIPATION MECHANISM OF ALUMINUM FOAM SANDWICH CIRCULAR TUBE UNDER INTERNAL BLAST LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2344-2353. DOI: 10.6052/0459-1879-23-165 |
[2] | Du Xulin, Cheng Linsong, Niu Langyu, Fang Sidong, Cao Renyi. NUMERICAL SIMULATION FOR COUPLING FLOW AND GEOMECHANICS IN EMBEDDED DISCRETE FRACTURE MODEL BASED ON XFEM-MBEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3413-3424. DOI: 10.6052/0459-1879-21-300 |
[3] | Jiang Shouyan, Wan Chen, Sun Liguo, Du Chengbin. CRACK-LIKE DEFECT INVERSION MODEL BASED ON SBFEM AND DEEP LEARNING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2724-2735. DOI: 10.6052/0459-1879-21-360 |
[4] | Gao Zhiqiang, Fu Weiping, Wang Wen, Kang Weichao, Wu Jiebei, Liu Yanpeng. THE CONTACT ENERGY DISSIPATION OF THE LATERAL AND INTERACTIONAL BETWEEN THE ELASTIC-PLASTIC ASPERITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 858-869. DOI: 10.6052/0459-1879-17-103 |
[5] | Wu Yitao, Yao Weixing, Wu Fuqiang. CDM MODEL FOR INTRALAMINAR PROGRESSIVE DAMAGE ANALYSIS OF COMPOSITE LAMINATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 94-104. DOI: 10.6052/0459-1879-13-106 |
[6] | Jiang Shouyan, Du Chengbin. A NOVEL ENRICHED FUNCTION OF ELEMENTS CONTAINING CRACK TIP FOR FRACTURE ANALYSIS IN XFEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 134-138. DOI: 10.6052/0459-1879-12-144 |
[7] | Jia Chenxia. Spatial composition and formation process of wave dissipative structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 645-651. DOI: 10.6052/0459-1879-2010-4-lxxb2009-216 |
[9] | ELASTIC-PLASTIC ANALYSIS OF CENTRAL SHORT CRACKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(6): 717-724. DOI: 10.6052/0459-1879-1990-6-1995-1002 |
[10] | 样条积分方程法分析弹塑性板弯曲[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 241-245. DOI: 10.6052/0459-1879-1990-2-1995-940 |
1. |
陈刚. 混凝土桥面板裂缝扩展有限元模拟分析. 工程与建设. 2024(05): 1123-1126 .
![]() | |
2. |
李斌,江守燕,孙立国,杜成斌. 考虑流固耦合的重力坝地震开裂过程模拟. 水利水运工程学报. 2023(03): 93-103 .
![]() |