EI、Scopus 收录
中文核心期刊
Volume 53 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Chen Feiguo, Ge Wei. A review of smoothed particle hydrodynamics family methods for multiphase flow. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2357-2373 doi: 10.6052/0459-1879-21-270
Citation: Chen Feiguo, Ge Wei. A review of smoothed particle hydrodynamics family methods for multiphase flow. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2357-2373 doi: 10.6052/0459-1879-21-270

A REVIEW OF SMOOTHED PARTICLE HYDRODYNAMICS FAMILY METHODS FOR MULTIPHASE FLOW

doi: 10.6052/0459-1879-21-270
  • Received Date: 2021-06-15
  • Accepted Date: 2021-08-10
  • Available Online: 2021-08-11
  • Publish Date: 2021-09-18
  • With meshfree and fully Lagrangian features of particle methods, smoothed particle hydrodynamics (SPH) is suitable to achieve high-accurate simulations of multiphase flows with large interfacial deformations, discontinuities, and multi-physics. Multiphase flow simulations with SPH methods have been reported abundantly and the specific implementations are much different. In this review, the basic SPH method and issues about fluid pressure, surface tension and solid boundary are discussed. And various implementations of SPH for multiphase flow simulation are mainly summarized as: (1) Lagrangian solver for the two-fluid model (TFM): The two phases are discreterized into two independent groups of SPH particles and coupled by the explicit interphase interaction; (2) multiphase SPH: The multiphase SPH method is considered as the natural extension of SPH method on multiphase flow simulation, and the interphase interaction is implicitly described by SPH parameters; (3) coupling of SPH and other discrete methods: The two phases with large differences each adopt different discrete methods to give play to the advantages of different Lagrangian methods; and (4) coupling of SPH and grid-based methods: The grid method handles the simple main-flow to obtain the balance between accuracy and efficiency. Also, some issues associated with SPH simulations of multiphase flows, such as the physicalization of simulation parameters and the improvement of accuracy and efficiency, are suggested as requiring attention.

     

  • loading
  • [1]
    Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 1977, 181: 375-389 doi: 10.1093/mnras/181.3.375
    [2]
    Lucy LB. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 1977, 82(12): 1013-1024
    [3]
    Monaghan JJ. Smoothed particle hydrodynamics. Reports on Progress in Physics, 2005, 68(8): 1703-1759 doi: 10.1088/0034-4885/68/8/R01
    [4]
    Cleary PW, Prakash M, Ha J, et al. Smooth particle hydrodynamics: status and future potential. Progress in Computational Fluid Dynamics, 2007, 7(2-4): 70-90
    [5]
    Gotoh H, Khayyer A. On the state-of-the-art of particle methods for coastal and ocean engineering. Coastal Engineering Journal, 2018, 60(1): 79-103 doi: 10.1080/21664250.2018.1436243
    [6]
    Koumoutsakos P. Multiscale flow simulations using particles. Annual Review of Fluid Mechanics, 2005, 37: 457-487 doi: 10.1146/annurev.fluid.37.061903.175753
    [7]
    Li SF, Liu WK. Meshfree and particle methods and their applications. Applied Mechanics Reviews, 2002, 55(1): 1-34 doi: 10.1115/1.1431547
    [8]
    Liu GR, Liu MB. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, 2003.
    [9]
    Liu MB, Liu GR. Smoothed particle hydrodynamics (SPH): An overview and recent developments. Archives of Computational Methods in Engineering, 2010, 17(1): 25-76 doi: 10.1007/s11831-010-9040-7
    [10]
    Monaghan JJ. Smoothed particle hydrodynamics. Annual Reviews in Astronomy and Astrophysics, 1992, 30(1): 543-574 doi: 10.1146/annurev.aa.30.090192.002551
    [11]
    Monaghan JJ. Smoothed particle hydrodynamics and its diverse applications. Annual Review of Fluid Mechanics, 2011, 44(1): 323-346
    [12]
    Monaghan JJ, Kocharyan A. SPH simulation of multi-phase flow. Computer Physics Communications, 1995, 87(1): 225-235
    [13]
    Shadloo MS, Oger G, Le Touzé D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Computers & Fluids, 2016, 136: 11-34
    [14]
    Violeau D, Rogers BD. Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. Journal of Hydraulic Research, 2016, 54(1): 1-26 doi: 10.1080/00221686.2015.1119209
    [15]
    Wang ZB, Chen R, Wang H, et al. An overview of smoothed particle hydrodynamics for simulating multiphase flow. Applied Mathematical Modelling, 2016, 40(23): 9625-9655
    [16]
    Ye T, Pan DY, Huang C, et al. Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications. Physics of Fluids, 2019, 31(1): 11301 doi: 10.1063/1.5068697
    [17]
    Khairi MAW, Rozainy MR, Ikhsan J. Smoothed particle hydrodynamics simulation for debris flow: a review. IOP Conference Series: Materials Science and Engineering, 2020, 864: 12045 doi: 10.1088/1757-899X/864/1/012045
    [18]
    Moreira AB, Leroy A, Violeau D, et al. Overview of large-scale smoothed particle hydrodynamics modeling of dam hydraulics. Journal of Hydraulic Engineering, 2020, 146(2): 3119001 doi: 10.1061/(ASCE)HY.1943-7900.0001658
    [19]
    Lind SJ, Rogers BD, Stansby PK. Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 2241(476): 20190801
    [20]
    Yang PY, Huang C, Zhang ZL, et al. Simulating natural convection with high rayleigh numbers using the smoothed particle hydrodynamics method. International Journal of Heat and Mass Transfer, 2021, 166: 120758 doi: 10.1016/j.ijheatmasstransfer.2020.120758
    [21]
    Breinlinger T, Polfer P, Hashibon A, et al. Surface tension and wetting effects with smoothed particle hydrodynamics. Journal of Computational Physics, 2013, 243: 14-27 doi: 10.1016/j.jcp.2013.02.038
    [22]
    Koch R, Braun S, Wieth L, et al. Prediction of primary atomization using smoothed particle hydrodynamics. European Journal of Mechanics B Fluids, 2017, 61: 271-278 doi: 10.1016/j.euromechflu.2016.10.007
    [23]
    Li L, Shen LM, Nguyen GD, et al. A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale. Computational Mechanics, 2018, 62(5): 1071-1085 doi: 10.1007/s00466-018-1551-3
    [24]
    Ray M, Yang XF, Kong S, et al. High-fidelity simulation of drop collision and vapor–liquid equilibrium of van der Waals fluids. Proceedings of the Combustion Institute, 2017, 36(2): 2385-2392 doi: 10.1016/j.proci.2016.06.018
    [25]
    Robinson M, Ramaioli M, Luding S. Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation. International Journal of Multiphase Flow, 2014, 59: 121-134 doi: 10.1016/j.ijmultiphaseflow.2013.11.003
    [26]
    Szewc K, Pozorski J, Minier JP. Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics. International Journal of Multiphase Flow, 2013, 50: 98-105 doi: 10.1016/j.ijmultiphaseflow.2012.11.004
    [27]
    Tartakovsky A, Meakin P. Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Physical Review E, 2005, 72(2): 26301
    [28]
    Tong MM, Browne DJ. An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow. International Journal of Heat and Mass Transfer, 2014, 73: 284-292 doi: 10.1016/j.ijheatmasstransfer.2014.01.064
    [29]
    Zhou GZ, GeW, Li JH. A revised surface tension model for macro-scale particle methods. Powder Technology, 2008, 183(1): 21-26 doi: 10.1016/j.powtec.2007.11.024
    [30]
    Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. San Diego: Academic Press, 1994.
    [31]
    Ishii M, Mishima K. Two-fluid model and hydrodynamic constitutive relations. Nuclear Engineering and Design, 1984, 82(2): 107-126
    [32]
    Stewart HB. Stability of two-phase flow calculation using two-fluid models. Journal of Computational Physics, 1979, 33(2): 259-270 doi: 10.1016/0021-9991(79)90020-2
    [33]
    Yang XF, Liu MB, Peng SL. Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Computers & Fluids, 2014, 92: 199-208
    [34]
    Monaghan JJ. Simulating free surface flows with SPH. Journal of Computational Physics, 1994, 110(2): 399-406 doi: 10.1006/jcph.1994.1034
    [35]
    Batchelor GK. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.
    [36]
    Liu MB, Liu GR. Meshfree particle simulation of micro channel flows with surface tension. Computational Mechanics, 2005, 35(5): 332-341 doi: 10.1007/s00466-004-0620-y
    [37]
    Morris JP. Simulating surface tension with smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 2000, 33(3): 333-353 doi: 10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7
    [38]
    Silbey RJ, Alberty RA, Bawendi MG. Physical Chemistry. Wiley, 2004: 944
    [39]
    Liu MB, Liu GR, Lam KY. Constructing smoothing functions in smoothed particle hydrodynamics with applications. Journal of Computational and Applied Mathematics, 2003, 155(2): 263-284 doi: 10.1016/S0377-0427(02)00869-5
    [40]
    Monaghan JJ, Pongracic H. Artificial viscosity for particle methods. Applied Numerical Mathematics, 1985, 1(3): 187-194 doi: 10.1016/0168-9274(85)90015-7
    [41]
    Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics, 1992, 100(2): 335-354 doi: 10.1016/0021-9991(92)90240-Y
    [42]
    Lind SJ, Xu R, Stansby PK, et al. Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics, 2012, 231(4): 1499-1523 doi: 10.1016/j.jcp.2011.10.027
    [43]
    Nomura K, Koshizuka S, Oka Y, et al. Numerical analysis of droplet breakup behavior using particle method. Journal of Nuclear Science and Technology, 2001, 38(12): 1057-1064 doi: 10.1080/18811248.2001.9715136
    [44]
    Zhang MY. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method. Journal of Computational Physics, 2010, 229(19): 7238-7259 doi: 10.1016/j.jcp.2010.06.010
    [45]
    Liu WB, Ma DJ, Zhang MY, et al. A new surface tension formulation in smoothed particle hydrodynamics for free-surface flows. Journal of Computational Physics, 2021, 439: 110203 doi: 10.1016/j.jcp.2021.110203
    [46]
    Zhang MY, Zhang H, Zheng LL. Simulation of droplet spreading, splashing and solidification using smoothed particle hydrodynamics method. International Journal of Heat and Mass Transfer, 2008, 51(13): 3410-3419
    [47]
    苏铁熊, 马理强, 刘谋斌等. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 64702-64707 (Su Tiexiong, Ma Liqiang, Liu Moubin, et al. A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(6): 64702-64707 (in Chinese) doi: 10.7498/aps.62.064702
    [48]
    Nugent S, Posch HA. Liquid drops and surface tension with smoothed particle applied mechanics. Physical Review E, 2000, 62(4): 4968-4975 doi: 10.1103/PhysRevE.62.4968
    [49]
    Morris JP, Fox PJ, Zhu Y. Modeling Low reynolds number incompressible flows using SPH. Journal of Computational Physics, 1997, 136(1): 214-226 doi: 10.1006/jcph.1997.5776
    [50]
    Gong K, Liu H, Wang BL. Water entry of a wedge based on SPH Model with an improved boundary treatment. Journal of Hydrodynamics, 2009, 21(6): 750-757 doi: 10.1016/S1001-6058(08)60209-7
    [51]
    Bierbrauer F, Bollada PC, Phillips TN. A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics. Computer Methods in Applied Mechanics and Engineering, 2009, 198(41): 3400-3410
    [52]
    Gómez-Gesteira M, Dalrymple RA. Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2004, 130(2): 63-69 doi: 10.1061/(ASCE)0733-950X(2004)130:2(63)
    [53]
    Ferrand M, Laurence DR, Rogers BD, et al. Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. International Journal for Numerical Methods in Fluids, 2012, 71(4): 446-472
    [54]
    Kulasegaram S, Bonet J, Lewis RW, et al. A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Computational Mechanics, 2004, 33(4): 316-325 doi: 10.1007/s00466-003-0534-0
    [55]
    Mayrhofer A, Ferrand M, Kassiotis C, et al. Unified semi-analytical wall boundary conditions in SPH: analytical extension to 3-D. Numerical Algorithms, 2015, 68(1): 15-34 doi: 10.1007/s11075-014-9835-y
    [56]
    Cummins SJ, Rudman M. An SPH projection method. Journal of Computational Physics, 1999, 152(2): 584-607 doi: 10.1006/jcph.1999.6246
    [57]
    Ellero M, Serrano M, Español P. Incompressible smoothed particle hydrodynamics. Journal of Computational Physics, 2007, 226(2): 1731-1752 doi: 10.1016/j.jcp.2007.06.019
    [58]
    Hu XY, Adams NA. An incompressible multi-phase SPH method. Journal of Computational Physics, 2007, 227(1): 264-278 doi: 10.1016/j.jcp.2007.07.013
    [59]
    Szewc K, Pozorski J, Minier JP. Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method. International Journal for Numerical Methods in Engineering, 2012, 92(4): 343-369 doi: 10.1002/nme.4339
    [60]
    Cornelis J, Ihmsen M, Peer A, et al. IISPH-FLIP for incompressible fluids. Computer Graphics Forum, 2014, 33(2): 255-262 doi: 10.1111/cgf.12324
    [61]
    Aly AM. Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics. International Journal of Numerical Methods for Heat & Fluid Flow, 2015, 25(3): 513-533
    [62]
    Lind SJ, Stansby PK, Rogers BD. Incompressible–compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH). Journal of Computational Physics, 2016, 309: 129-147 doi: 10.1016/j.jcp.2015.12.005
    [63]
    Koshizuka S. A particle method for incompressible viscous flow with fluid fragmentation. Computational Fluid Dynamics Journal, 1995, 4(1): 29-46
    [64]
    Koshizuka S, Oka Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Science and Engineering, 1996, 123(3): 421-434 doi: 10.13182/NSE96-A24205
    [65]
    Koshizuka S, Nobe A, Oka Y. Numerical analysis of breaking waves using the moving particle semi-implicit method. International Journal for Numerical Methods in Fluids, 1998, 26(7): 751-769 doi: 10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
    [66]
    Yoon HY, Koshizuka S, Oka Y. A Mesh-free numerical method for direct simulation of gas-liquid phase interface. Nuclear Science and Engineering, 1999, 133(2): 192-200 doi: 10.13182/NSE99-A2081
    [67]
    Yoon HY, Koshizuka S, Oka Y. Direct calculation of bubble growth, departure, and rise in nucleate pool boiling. International Journal of Multiphase Flow, 2001, 27(2): 277-298 doi: 10.1016/S0301-9322(00)00023-9
    [68]
    Ataie-Ashtiani B, Farhadi L. A stable moving-particle semi-implicit method for free surface flows. Fluid Dynamics Research, 2006, 38(4): 241-256 doi: 10.1016/j.fluiddyn.2005.12.002
    [69]
    Khayyer A, Gotoh H. Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure. Coastal Engineering, 2009, 56(4): 419-440 doi: 10.1016/j.coastaleng.2008.10.004
    [70]
    Kondo M, Koshizuka S. Improvement of stability in moving particle semi-implicit method. International Journal for Numerical Methods in Fluids, 2011, 65(6): 638-654 doi: 10.1002/fld.2207
    [71]
    Shao SD, Gotoh H. Turbulence particle models for tracking free surfaces. Journal of Hydraulic Research, 2005, 43(3): 276-289 doi: 10.1080/00221680509500122
    [72]
    张凯, 孙中国, 席光. 移动粒子半隐式法核函数特征对压力求解稳定性的影响. 西安交通大学学报, 2019, 53(9): 1-6 (Zhang Kai, Sun Zhongguo, Xi Guang. Influence of the kernel function characteristics on the stability of pressure solution of moving particle semi-implicit method. Journal of Xi'an Jiaotong University, 2019, 53(9): 1-6 (in Chinese)
    [73]
    Ge W, Li JH. Macro-scale pseudo-particle modeling for particle-fluid systems. Chinese Science Bulletin, 2001, 46(18): 1503-1507 doi: 10.1007/BF02900568
    [74]
    Ge W, Li JH. Simulation of particle–fluid systems with macro-scale pseudo-particle modeling. Powder Technology, 2003, 137(1): 99-108
    [75]
    Ma JS, Ge W, Wang XW, et al. High-resolution simulation of gas–solid suspension using macro-scale particle methods. Chemical Engineering Science, 2006, 61(21): 7096-7106 doi: 10.1016/j.ces.2006.07.042
    [76]
    Xiong QG, Deng LJ, Wang W, et al. SPH method for two-fluid modeling of particle–fluid fluidization. Chemical Engineering Science, 2011, 66(9): 1859-1865 doi: 10.1016/j.ces.2011.01.033
    [77]
    Xiong QG, Li B, Chen FG, et al. Direct numerical simulation of sub-grid structures in gas-solid flow−GPU implementation of macro-scale pseudo-particle modeling. Chemical Engineering Science, 2010, 65(19): 5356-5365 doi: 10.1016/j.ces.2010.06.035
    [78]
    Monaghan JJ. Implicit SPH drag and dusty gas dynamics. Journal of Computational Physics, 1997, 138(2): 801-820 doi: 10.1006/jcph.1997.5846
    [79]
    Laibe G, Price DJ. Dusty gas with smoothed particle hydrodynamics—I. Algorithm and Test Suite. Monthly Notices of the Royal Astronomical Society, 2012, 420(3): 2345-2364 doi: 10.1111/j.1365-2966.2011.20202.x
    [80]
    Hu XY, Adams NA. A constant-density approach for incompressible multi-phase SPH. Journal of Computational Physics, 2009, 228(6): 2082-2091 doi: 10.1016/j.jcp.2008.11.027
    [81]
    Shadloo MS, Yildiz M. Numerical modeling of Kelvin–Helmholtz instability using smoothed particle hydrodynamics. International Journal for Numerical Methods in Engineering, 2011, 87(10): 988-1006 doi: 10.1002/nme.3149
    [82]
    Shao SD. Incompressible smoothed particle hydrodynamics simulation of multifluid flows. International Journal for Numerical Methods in Fluids, 2012, 69(11): 1715-1735 doi: 10.1002/fld.2660
    [83]
    Colagrossi A, Landrini M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Journal of Computational Physics, 2003, 191(2): 448-475 doi: 10.1016/S0021-9991(03)00324-3
    [84]
    Das AK, Das PK. Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation. Chemical Engineering Science, 2009, 64(10): 2281-2290 doi: 10.1016/j.ces.2009.01.053
    [85]
    Szewc K, Tanière A, Pozorski J, et al. A study on application of smoothed particle hydrodynamics to multi-phase flows. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13(6): 383
    [86]
    孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015, 64(17): 207-221 (Sun Pengnan, Li Yunbo, Ming Furen. Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Physica Sinica, 2015, 64(17): 207-221 (in Chinese)
    [87]
    王平平, 张阿漫, 孟子飞. 一种改进的适用于多相流SPH模拟的粒子位移修正算法. 科学通报, 2020, 65(8): 729-739 (Wang Pingping, Zhang Aman, Meng Zifei. An improved particle shifting algorithm for multiphase flows in SPH method. Chinese Science Bulletin, 2020, 65(8): 729-739 (in Chinese) doi: 10.1360/TB-2019-0540
    [88]
    Akbari H. An improved particle shifting technique for incompressible smoothed particle hydrodynamics methods. International Journal for Numerical Methods in Fluids, 2019, 90(12): 603-631 doi: 10.1002/fld.4737
    [89]
    Akinci N, Ihmsen M, Akinci G, et al. Versatile rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics, 2012, 31(4): 1-8
    [90]
    Tofighi N, Ozbulut M, Rahmat A, et al. An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids. Journal of Computational Physics, 2015, 297: 207-220 doi: 10.1016/j.jcp.2015.05.015
    [91]
    Fourtakas G, Rogers BD. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU). Advances in Water Resources, 2016, 92: 186-199 doi: 10.1016/j.advwatres.2016.04.009
    [92]
    Potapov AV, Hunt ML, Campbell CS. Liquid–solid flows using smoothed particle hydrodynamics and the discrete element method. Powder Technology, 2001, 116(2): 204-213
    [93]
    Huang YJ, Nydal OJ. Coupling of discrete-element method and smoothed particle hydrodynamics for liquid-solid flows. Theoretical and Applied Mechanics Letters, 2012, 2(1): 12002 doi: 10.1063/2.1201202
    [94]
    El Shamy U, Sizkow SF. Coupled smoothed particle hydrodynamics-discrete element method simulations of soil liquefaction and its mitigation using gravel drains. Soil Dynamics and Earthquake Engineering, 2021, 140: 106460 doi: 10.1016/j.soildyn.2020.106460
    [95]
    Robb DM, Gaskin SJ, Marongiu J. SPH-DEM model for free-surface flows containing solids applied to river ice jams. Journal of Hydraulic Research, 2016, 54(1): 27-40 doi: 10.1080/00221686.2015.1131203
    [96]
    Liu L, Zhang P, Xie P, et al. Coupling of dilated polyhedral DEM and SPH for the simulation of rock dumping process in waters. Powder Technology, 2020, 374: 139-151 doi: 10.1016/j.powtec.2020.06.095
    [97]
    Ji SY, Chen XD, Liu L, et al. Coupled DEM-SPH method for interaction between dilated polyhedral particles and fluid. Mathematical Problems in Engineering, 2019, 2019: 4987801
    [98]
    Polwaththe-Gallage H, Saha SC, Sauret E, et al. A coupled SPH-DEM approach to model the interactions between multiple red blood cells in motion in capillaries. International Journal of Mechanics and Materials in Design, 2016, 12(4): 477-494 doi: 10.1007/s10999-015-9328-8
    [99]
    陈飞国, 葛蔚. 耦合拟颗粒模型和光滑粒子流体动力学模拟气液流动(内部报告). 北京: 中国科学院过程工程研究所, 2021

    (Chen Feiguo, Ge Wei. Numerical modeling for gas-liquid flow with pseudo-particle model and smoothed particle hydrodynamics (Internal Report). Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2021 (in Chinese))
    [100]
    Ge W, Ma JS, Zhang JY, et al. Particle methods for multi-scale simulation of complex flows. Chinese Science Bulletin, 2005, 50(11): 1057-1069 doi: 10.1360/04wb0108
    [101]
    Ge W, Li JH. Macro-scale phenomena reproduced in microscopic systems--pseudo-particle modeling of fluidization. Chemical Engineering Science, 2003, 58(8): 1565-1585 doi: 10.1016/S0009-2509(02)00673-5
    [102]
    Marrone S, Di Mascio A, Le Touzé D. Coupling of smoothed particle hydrodynamics with finite volume method for free-surface flows. Journal of Computational Physics, 2016, 310: 161-180 doi: 10.1016/j.jcp.2015.11.059
    [103]
    Napoli E, De Marchis M, Gianguzzi C, et al. A coupled finite volume–smoothed particle hydrodynamics method for incompressible flows. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 674-693 doi: 10.1016/j.cma.2016.07.034
    [104]
    Deng LJ, Liu YN, Wang W, et al. A two-fluid smoothed particle hydrodynamics (TF-SPH) method for gas–solid fluidization. Chemical Engineering Science, 2013, 99: 89-101 doi: 10.1016/j.ces.2013.05.047
    [105]
    Feng Y, Wang JM, Liu FH. Numerical simulation of single particle acceleration process by SPH coupled FEM for abrasive waterjet cutting. International Journal of Advanced Manufacturing Technology, 2012, 59(1): 193-200
    [106]
    Zhang ZL, Walayat K, Chang JZ, et al. Meshfree modeling of a fluid-particle two-phase flow with an improved SPH method. International Journal for Numerical Methods in Engineering, 2018, 116(8): 530-569 doi: 10.1002/nme.5935
    [107]
    Fourey G, Hermange C, Le Touzé D, et al. An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods. Computer Physics Communications, 2017, 217: 66-81 doi: 10.1016/j.cpc.2017.04.005
    [108]
    Zhang ZC, Qiang HF, Gao WR. Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation. Engineering Structures, 2011, 33(1): 255-264 doi: 10.1016/j.engstruct.2010.10.020
    [109]
    Long T, Huang C, Hu D, et al. Coupling edge-based smoothed finite element method with smoothed particle hydrodynamics for fluid structure interaction problems. Ocean Engineering, 2021, 225: 108772 doi: 10.1016/j.oceaneng.2021.108772
    [110]
    Long T, Yang PY, Liu MB. A novel coupling approach of smoothed finite element method with SPH for thermal fluid structure interaction problems. International Journal of Mechanical Sciences, 2020, 174: 105558 doi: 10.1016/j.ijmecsci.2020.105558
    [111]
    Chen JK, Beraun JE, Jih CJ. An improvement for tensile instability in smoothed particle hydrodynamics. Computational Mechanics, 1999, 23(4): 279-287 doi: 10.1007/s004660050409
    [112]
    Tartakovsky AM, Meakin P. A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability. Journal of Computational Physics, 2005, 207(2): 610-624 doi: 10.1016/j.jcp.2005.02.001
    [113]
    Liu MB, Xie WP, Liu GR. Modeling incompressible flows using a finite particle method. Applied Mathematical Modelling, 2005, 29(12): 1252-1270 doi: 10.1016/j.apm.2005.05.003
    [114]
    Liu MB, Liu GR. Restoring particle consistency in smoothed particle hydrodynamics. Applied Numerical Mathematics, 2006, 56(1): 19-36 doi: 10.1016/j.apnum.2005.02.012
    [115]
    Zhang ZL, Liu MB. A decoupled finite particle method for modeling incompressible flows with free surfaces. Applied Mathematical Modelling, 2018, 60: 606-633 doi: 10.1016/j.apm.2018.03.043
    [116]
    Schuessler I, Schmitt D. Comments on smoothed particle hydrodynamics. Astronomy and Astrophysics, 1981, 97: 373-379
    [117]
    Swegle JW, Hicks DL, Attaway SW. Smoothed particle hydrodynamics stability analysis. Journal of Computational Physics, 1995, 116(1): 123-134 doi: 10.1006/jcph.1995.1010
    [118]
    Monaghan JJ. SPH without a tensile instability. Journal of Computational Physics, 2000, 159(2): 290-311 doi: 10.1006/jcph.2000.6439
    [119]
    Sun PN, Colagrossi A, Marrone S, et al. Multi-resolution delta-plus-SPH with tensile instability control: Towards high Reynolds number flows. Computer Physics Communications, 2018, 224: 63-80 doi: 10.1016/j.cpc.2017.11.016
    [120]
    Sun PN, Colagrossi A, Marrone S, et al. The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 25-49 doi: 10.1016/j.cma.2016.10.028
    [121]
    Antuono M, Colagrossi A, Marrone S. Numerical diffusive terms in weakly-compressible SPH schemes. Computer Physics Communications, 2012, 183(12): 2570-2580 doi: 10.1016/j.cpc.2012.07.006
    [122]
    Xu ZJ, Meakin P, Tartakovsky AM. Diffuse-interface model for smoothed particle hydrodynamics. Physical Review E, 2009, 79(3): 36702 doi: 10.1103/PhysRevE.79.036702
    [123]
    Monaghan JJ. Smoothed particle hydrodynamic simulations of shear flow. Monthly Notices of the Royal Astronomical Society, 2006, 365(1): 199-213 doi: 10.1111/j.1365-2966.2005.09704.x
    [124]
    Tartakovsky AM, Panchenko A. Pairwise force smoothed particle hydrodynamics model for multiphase flow: Surface tension and contact line dynamics. Journal of Computational Physics, 2016, 305: 1119-1146 doi: 10.1016/j.jcp.2015.08.037
    [125]
    Monaghan JJ. On the problem of penetration in particle methods. Journal of Computational Physics, 1989, 82(1): 1-15 doi: 10.1016/0021-9991(89)90032-6
    [126]
    Cui XD, Habashi WG, Casseau V. MPI parallelisation of 3D multiphase smoothed particle hydrodynamics. International Journal of Computational Fluid Dynamics, 2020, 34(7-8): 610-621 doi: 10.1080/10618562.2020.1785436
    [127]
    Plimpton S, Attaway S, Hendrickson B, et al. Parallel transient dynamics simulations: Algorithms for contact detection and smoothed particle hydrodynamics. Journal of Parallel and Distributed Computing, 1998, 50(1): 104-122
    [128]
    Morikawa D, Senadheera H, Asai M. Explicit incompressible smoothed particle hydrodynamics in a multi-GPU environment for large-scale simulations. Computational Particle Mechanics, 2021, 8(3): 493-510 doi: 10.1007/s40571-020-00347-0
    [129]
    Schäfer CM, Wandel OJ, Burger C, et al. A versatile smoothed particle hydrodynamics code for graphic cards. Astronomy and Computing, 2020, 33: 100410 doi: 10.1016/j.ascom.2020.100410
    [130]
    Crespo AC, Dominguez JM, Barreiro A, et al. GPUs, a new tool of acceleration in CFD: Efficiency and reliability on smoothed particle hydrodynamics methods. Plos One, 2011, 6(6): e20685 doi: 10.1371/journal.pone.0020685
    [131]
    Rustico E, Bilotta G, Hérault A, et al. Advances in multi-GPU smoothed particle hydrodynamics simulations. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(1): 43-52 doi: 10.1109/TPDS.2012.340
    [132]
    Crespo AJC, Domínguez JM, Rogers BD, et al. DualSPHysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Computer Physics Communications, 2015, 187: 204-216 doi: 10.1016/j.cpc.2014.10.004
    [133]
    Valdez-Balderas D, Domínguez JM, Rogers BD, et al. Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters. Journal of Parallel and Distributed Computing, 2013, 73(11): 1483-1493 doi: 10.1016/j.jpdc.2012.07.010
    [134]
    Domínguez JM, Crespo AJC, Valdez-Balderas D, et al. New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Computer Physics Communications, 2013, 184(8): 1848-1860 doi: 10.1016/j.cpc.2013.03.008
    [135]
    Ming FR, Zhang AM, Cheng H, et al. Numerical simulation of a damaged ship cabin flooding in transversal waves with smoothed particle hydrodynamics method. Ocean Engineering, 2018, 165: 336-352 doi: 10.1016/j.oceaneng.2018.07.048
    [136]
    Harada T, Koshizuka S, Kawaguchi Y. Smoothed particle hydrodynamics on GPUs. Computer Graphics International, SBC Petropolis, 2007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1637) PDF downloads(358) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return