EI、Scopus 收录
Volume 53 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Zou Yuxiong, Ma Gang, Li Yiao, Wang Di, Qiu Huanfeng, Zhou Wei. Distribution and evolution of free volume of ellipsoidal particle systems during shearing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2374-2383 doi: 10.6052/0459-1879-21-255
Citation: Zou Yuxiong, Ma Gang, Li Yiao, Wang Di, Qiu Huanfeng, Zhou Wei. Distribution and evolution of free volume of ellipsoidal particle systems during shearing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2374-2383 doi: 10.6052/0459-1879-21-255


doi: 10.6052/0459-1879-21-255
  • Received Date: 2021-06-08
  • Accepted Date: 2021-07-20
  • Available Online: 2021-07-21
  • Publish Date: 2021-09-18
  • Granular material is a complex multi-body interaction system which is composed of a large number of discrete particles and their surrounding free volume. Although the correlation between free volume and the mechanical properties as well as the deformation characteristics of granular materials has been proved, the local free volume of non-spherical particles is not fully understood at present due to the difficulties in characterizing. In this paper, the combined finite and discrete element method (FDEM) is used to simulate the triaxial tests of ellipsoidal particles with different principal axis lengths, and the Set Voronoi tessellation method is applied to construct the Voronoi cells of the particles during shearing. The statistical distribution and evolution of the local free volume of the granular systems during shearing are analyzed, and the influence of particle shape on the evolution of free volume is studied. Our results show the anisotropy of Voronoi cells gradually increases during shearing, and the degree of anisotropy increase will be intensified with the increase of particle shape asphericity, which means the granular assembly with a larger asphericity will experience more intense rearrangement during shearing. The local void ratio of ellipsoidal particle systems with different asphericity statistically complies with a k−Γ distribution, which is controlled by the global void ratio of granular assembly and not affected by particle shape and shear state. The local void ratio fluctuations follow an asymmetric laplace distribution (ALD), and its asymmetric parameter which has a linear relationship with the global void ratio of granular assembly describes the competition between contraction and dilatation of local free volume.


  • loading
  • [1]
    Rowe PW. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London, 1962, 269(1339): 500-527
    Vardoulakis I, Goldscheider M, Gudehus G. Formation of shear bands in sand bodies as a bifurcation problem. International Journal for Numerical and Analytical Methods in Geomechanics, 1978, 2(2): 99-128 doi: 10.1002/nag.1610020203
    Jaeger HM, Nagel SR, Behringer RP. Granular solids, liquids, and gases. Reviews of Modern Physics, 1996, 68(4): 1259-1273 doi: 10.1103/RevModPhys.68.1259
    季顺迎. 非均匀颗粒材料的类固-液相变行为及本构方程. 力学学报, 2007, 39(2): 223-237 (Ji Shunying. The quasi-solid-liquid phase transition of non-uniform granular materials and their constitutive equation. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(2): 223-237 (in Chinese) doi: 10.3321/j.issn:0459-1879.2007.02.012
    Roscoe KH, Schofield AN, Thurairajah A. Yielding of clays in states wetter than critical. Géotechnique, 1963, 13(3): 211-240
    李广信. 高等土力学. 北京: 清华大学出版社, 2004

    (Li Guangxin. Advanced Soil Mechanics. Beijing: Tsinghua University Press, 2004 (in Chinese))
    姚仰平, 张民生, 万征等. 基于临界状态的砂土本构模型研究. 力学学报, 2018, 50(3): 589-598 (Yao Yangping, Zhang Minsheng, Wan Zheng, et al. Constitutive model for sand based on the critical state. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 589-598 (in Chinese) doi: 10.6052/0459-1879-17-334
    陈云敏, 马鹏程, 唐耀. 土体的本构模型和超重力物理模拟. 力学学报, 2020, 52(04): 901-915 (Chen Yunmin, Ma Pengcheng, Tang Yao. Constitutive models and hypergravity physical simulation of soils. Chinese Journal of Geotechnical Engineering, 2020, 52(04): 901-915 (in Chinese)
    蒋明镜. 现代土力学研究的新视野——宏微观土力学. 岩土工程学报, 2019, 41(2): 195-254 (Jiang Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254 (in Chinese)
    刘清秉, 项伟, Budhu M等. 砂土颗粒形状量化及其对力学指标的影响分析. 岩土力学, 2011, 32(S1): 190-197 (Liu Qingbing, Xiang Wei, Budhu M, et al. Study of particle shape quantification and effect on mechanical property of sand. Rock and Soil Mechanics, 2011, 32(S1): 190-197 (in Chinese)
    Yang J, Luo XD. Exploring the relationship between critical state and particle shape for granular materials. Journal of the Mechanics and Physics of Solids, 2015, 84: 196-213 doi: 10.1016/j.jmps.2015.08.001
    Suh HS, Kim KY, Lee J, et al. Quantification of bulk form and angularity of particle with correlation of shear strength and packing density in sands. Engineering Geology, 2017, 20: 256-265
    邹宇雄, 周伟, 陈远等. 颗粒形状对岩土颗粒材料传力特性的影响机制. 水力发电学报, 2020, 39(5): 17-26 (Zou Yuxiong, Zhou Wei, Chen Yuan, et al. Mechanism of particle shape on force transfer properties of granular geo-materials. Journal of Hydroelectric Engineering, 2020, 39(5): 17-26 (in Chinese)
    Murphy KA, Dahmen KA, Jaeger HM. Transforming mesoscale granular plasticity through particle shape. Physical Review X, 2019, 9(1): 011014 doi: 10.1103/PhysRevX.9.011014
    Cho GC, Dodds J, Santamarina JC. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591-602 doi: 10.1061/(ASCE)1090-0241(2006)132:5(591)
    Zhao S, Zhang N, Zhou X, et al. Particle shape effects on fabric of granular random packing. Powder Technology, 2017, 310: 175-186 doi: 10.1016/j.powtec.2016.12.094
    Majmudar TS, Behringer RP. Contact force measurements and stress-induced anisotropy in granular materials. Nature, 2005, 435: 1079-1082 doi: 10.1038/nature03805
    Chen Y, Ma G, Zhou W, et al. An enhanced tool for probing the microscopic behavior of granular materials based on X-ray micro-CT and FDEM. Computers and Geotechnics, 2021, 132: 103974 doi: 10.1016/j.compgeo.2020.103974
    Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29(30): 331-336
    Munjiza A, Owen DRJ, Bicanic N. A combined finite-discrete element method in transient dynamics of fracturing solids. Engineering Computations, 1995, 12(2): 145-174 doi: 10.1108/02644409510799532
    Munjiza A. The Combined Finite–Discrete Element Method. Cichester: John Wiley and Son, 2004
    Oda M. Initial fabrics and their relations to mechanical properties of granular material. Soilsand Foundation, 1972, 12(1): 17-36 doi: 10.3208/sandf1960.12.17
    Radjai F, Wolf DE, Jean M, et al. Bimodal character of stress transmission in granular packings. Physical Review Letters, 1998, 80(1): 61-64 doi: 10.1103/PhysRevLett.80.61
    Ouadfel H, Rothenburg L. “Stress–force–fabric” relationship for assemblies of ellipsoids. Mechanics of Materials, 2001, 33(4): 201-221 doi: 10.1016/S0167-6636(00)00057-0
    刘嘉英, 周伟, 马刚等. 颗粒材料三维应力路径下的接触组构特性. 力学学报, 2019, 51(1): 26-35 (Liu Jiaying, Zhou Wei, Ma Gang, et al. Contact fabric characteristics of granular materials under three dimensional stress paths. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 26-35 (in Chinese) doi: 10.6052/0459-1879-18-338
    钱劲松, 陈康为, 张磊. 粒料固有各向异性的离散元模拟与细观分析. 力学学报, 2018, 50(5): 1041-1050 (Qian Jinsong, Chen Kangwei, Zhang Lei. Simulation and micro-mechanics analysis of inherent anisotropy of granular by distinct element method. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1041-1050 (in Chinese)
    Edwards SF, Oakeshott RBS. Theory of powders. Physica A: Statistical Mechanics and its Applications, 1989, 157(3): 1080-1090 doi: 10.1016/0378-4371(89)90034-4
    Mehta A, Edwards S. Statistical mechanics of powder mixtures. Physica A: Statistical Mechanics and its Applications, 1989, 157(3): 1091-1100 doi: 10.1016/0378-4371(89)90035-6
    Kang DH, Choo J, Yun TS. Evolution of pore characteristics in the 3D numerical direct shear test. Computers and Geotechnics, 2013, 49: 53-61 doi: 10.1016/j.compgeo.2012.10.009
    Zhao S, Evans TM, Zhou X. Three-dimensional voronoi analysis of monodisperse ellipsoids during triaxial shear. Powder Technology, 2018, 323: 323-336 doi: 10.1016/j.powtec.2017.10.023
    Luchnikov VA, Medvedev NN, Oger L, et al. Voronoi-Delaunay analysis of voids in systems of nonspherical particles. Physical Review E, 1999, 59(6): 7205-7212 doi: 10.1103/PhysRevE.59.7205
    Dong K, Wang C, Yu A. Voronoi analysis of the packings of non-spherical particles. Chemical Engineering Science, 2016, 153: 330-343 doi: 10.1016/j.ces.2016.07.013
    Ma G, Zhou W, Regueiro RA, et al. Modeling the fragmentation of rock grains using computed tomography and combined FDEM. Powder Technology, 2017, 308: 388-397 doi: 10.1016/j.powtec.2016.11.046
    Ma G, Zhou W, Chang XL, et al. Combined FEM/DEM modeling of triaxial compression tests for rockfills with polyhedral particles. International Journal of Geomechanics, 2014, 14(4): 04014014 doi: 10.1061/(ASCE)GM.1943-5622.0000372
    马刚, 周伟, 常晓林等. 堆石体三轴剪切试验的三维细观数值模拟. 岩土工程学报, 2011, 33(5): 746-753 (Ma Gang, Zhou Wei, Chang Xiaolin, et al. 3D mesoscopic numerical simulation of triaxial shear tests for rockfill. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 746-753 (in Chinese)
    常晓林, 马刚, 周伟等. 颗粒形状及粒间摩擦角对堆石体宏观力学行为的影响. 岩土工程学报, 2012, 34(4): 646-653 (Chang Xiaolin, Ma Gang, Zhou Wei, et al. Influences of particle shape and inter-particle friction angle on macroscopic response of rockfill. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 646-653 (in Chinese)
    Barrett PJ. The shape of rock particles, a critical review. Sedimentology, 1980, 27(3): 291-303 doi: 10.1111/j.1365-3091.1980.tb01179.x
    Domokos G, Kun F, Sipos AÁ, et al. Universality of fragment shapes. Scientific Reports, 2015, 5: 9147 doi: 10.1038/srep09147
    Imre B, Rabsamen S, Springman SM. A coefficient of restitution of rock materials. Computers & Geosciences, 2008, 34(4): 339-350
    Tatone BSA, Grasselli G. A calibration procedure for two-dimensional laboratory-scale hybrid finite-discrete element simulations. International Journal of Rock Mechanics & Mining Sciences, 2015, 75: 56-72
    邹宇雄, 马刚, 李易奥等. 抗转动对颗粒材料组构特性的影响研究. 岩土力学, 2020, 41(8): 2829-2838 (Zou Yuxiong, Ma Gang, Li Yiao, et al. Impact of rotation resistance on fabric of granular materials. Rock and Soil Mechanics, 2020, 41(8): 2829-2838 (in Chinese)
    Rycroft CH. Voro++: A three-dimensional Voronoi cell library in C++. Chaos, 2009, 19(4): 041111 doi: 10.1063/1.3215722
    Schaller FM, Kapfer SC, Evans ME, et al. Set Voronoi diagrams of 3D assemblies of aspherical particles. Philosophical Magazine, 2013, 93(31-33): 3993-4017 doi: 10.1080/14786435.2013.834389
    Kou B, Cao Y, Li J, et al. Translational and rotational dynamical heterogeneities in granular systems. Physical Review Letters, 2018, 121(1): 018002 doi: 10.1103/PhysRevLett.121.018002
    Schaller FM, Neudecker M, Saadatfar M, et al. Local origin of global contact numbers in frictional ellipsoid packings. Physical Review Letters, 2015, 114(15): 158001 doi: 10.1103/PhysRevLett.114.158001
    Guo N, Zhao J. The signature of shear-induced anisotropy in granular media. Computers and Geotechnics, 2013, 47: 1-15 doi: 10.1016/j.compgeo.2012.07.002
    Zhao S, Zhao J, Guo N. Universality of internal structure characteristics in granular media under shear. Physical Review E, 2020, 101(1): 012906 doi: 10.1103/PhysRevE.101.012906
    Guo N, Zhao J. Local fluctuations and spatial correlations in granular flows under constant-volume quasistatic shear. Physical Review E, 2014, 89(4): 042208 doi: 10.1103/PhysRevE.89.042208
    Aste T, Di Matteo T. Emergence of gamma distributions in granular materials and packing models. Physical Review E, 2008, 77(2): 021309 doi: 10.1103/PhysRevE.77.021309
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (672) PDF downloads(133) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint