EI、Scopus 收录
Volume 53 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Gao Zhengguo, Dong Pengkun, Zhang Yajun, Sun Huizhu, Ndiaye Becaye Cissokho. A novel discrete element rolling resistance model based on hysteresis spring energy dissipation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2384-2394 doi: 10.6052/0459-1879-21-236
Citation: Gao Zhengguo, Dong Pengkun, Zhang Yajun, Sun Huizhu, Ndiaye Becaye Cissokho. A novel discrete element rolling resistance model based on hysteresis spring energy dissipation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2384-2394 doi: 10.6052/0459-1879-21-236


doi: 10.6052/0459-1879-21-236
  • Received Date: 2021-05-29
  • Accepted Date: 2021-07-21
  • Rev Recd Date: 2021-07-21
  • Available Online: 2021-07-21
  • Publish Date: 2021-09-18
  • The rolling resistance between particles plays an important role in the stability of the particulate systems. In a conventional discrete element method, the rolling resistance model between particles is usually made of springs, dashpots, and sliders in the rotational direction. The particles rolling kinetic energy is dissipated by the viscous (moment) and friction forces. With this model, the viscous force (moment) is directly related to the rolling velocity. Consequently, the dynamic dissipation capacity of particles close to the static state becomes weaker with the rolling velocity decreasing. It is known that the time required to simulate a particle rolling with a velocity close to zero by using the traditional discrete element method is longer than the experimental results. To solve this problem, the mechanism of rolling resistance caused by material hysteresis is analyzed based on tribological principle, and a new discrete element model of hysteresis rolling resistance (HDEM) is established. A hysteresis spring with velocity-independent kinetic energy dissipation is proposed, and its constitutive law’s formula is derived. To verify the new rolling resistance model, the free-rolling of a single round particle specimen on a flat surface is measured through a physical experiment. The measured data are compared with the results simulated by the new rolling resistance model HDEM and the conventional rolling resistance model. The results show that the results based on HDEM are more consistent with the experimental data, and the particle oscillation frequency is in better agreement with the experimental phenomenon observed.


  • loading
  • [1]
    Zhang J, Zou GY, Zhang N, et al. Dynamic analysis of a vehicle with leaf spring based on the hysteresis model. International Journal of Vehicle Performance, 2018, 4(3): 282-304 doi: 10.1504/IJVP.2018.095309
    Herrmann HJ, Luding S. Modeling granular media on the computer. Continuum Mechanics and Thermodynamics, 1998, 10(4): 189-231 doi: 10.1007/s001610050089
    王云霞, 梁志杰, 张东兴等. 基于离散元的玉米种子颗粒模型种间接触参数标定. 农业工程学报, 2016, 32(22): 36-42 (Wang Yunxia, Liang Zhijie, Zhang Dongxing, et al. Calibration method of contact characteristic parameters for corn seeds based on EDEM. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 36-42 (in Chinese) doi: 10.11975/j.issn.1002-6819.2016.22.005
    Höhner D, Wirtz S, Scherer V. Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method. Power Technology, 2013, 235: 614-627 doi: 10.1016/j.powtec.2012.11.004
    孙其诚, 王光谦. 流体动力学//中国科学院编. 自然界和工程中的颗粒物质与颗粒流. 北京: 科学出版社, 2014: 54-71

    (Sun Qicheng, Wang Guangqian. Granular matter and granular flow in nature and engineering//Chinese Academy of Sciences ed. Fluid Dynamics. Beijing: Science Press, 2014: 54-71 (in Chinese))
    Bardet JP, Huang Q. Numerical modeling of micro-polar effects in idealized granular materials. American Society of Mechanical Engineers, 1992, 37: 85-92
    Morgan JK. Capturing physical phenomena in particle dynamics simulations of granular fault gouge//ACES Workshop Proceedings, 2003: 23-30
    Sakaguchi H, Ozaki E, Igarashi T. Plugging of the flow of granular materials during the discharge from a silo. International Journal of Modern Physics B, 1993, 7: 1949-1963 doi: 10.1142/S0217979293002705
    Jiang MJ, Yu HS, Harris D. A novel discrete model for granular material incorporating rolling resistance. Computers and Geotechnics, 2005, 32(5): 340-357 doi: 10.1016/j.compgeo.2005.05.001
    魏新容, 段绍臻, 孙金龙等. 基于碰撞模型的斜坡滚石颗粒速度预测. 力学学报, 2020, 52(3): 707-715 (Wei Xinrong, Duan Shaozhen, Sun Jinlong, et al. Velocity prediction of slope rolling stone particle based on collision model. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 707-715 (in Chinese) doi: 10.6052/0459-1879-20-039
    Zhang Y, Mollon G, Descartes S. Significance of third body rheology in friction at a dry sliding interface observed by a multibody meshfree model: Influence of cohesion between particles. Tribology International, 2020, 145: 106188 doi: 10.1016/j.triboint.2020.106188
    Zhou Y, Shi Z, Zhang Q, et al. Damming process and characteristics of landslide-debris avalanches. Soil Dynamics and Earthquake Engineering, 2019, 121: 252-261 doi: 10.1016/j.soildyn.2019.03.014
    Lopez RDF, Larsson S, Silfwerbrand J. A discrete element material model including particle degradation suitable for rockfill embankments. Computers and Geotechnics, 2019, 115: 103166 doi: 10.1016/j.compgeo.2019.103166
    李刚, 李恩兴. 某堆积体斜坡变形特征及稳定性分析. 地质灾害与环境保护, 2020, 31(3): 66-71+76 (LI Gang, LI Enxing. A study of deformation features and stability of a talus landslide. Journal of Geologica Hazards and Environment Preservation, 2020, 31(3): 66-71+76 (in Chinese) doi: 10.3969/j.issn.1006-4362.2020.03.010
    邹宇雄, 马刚, 李易奥等. 抗转动对颗粒材料组构特性的影响研究. 岩土力学, 2020, 41(8): 2829-2838 (Zou Yuxiong, MA Gang, LI Yiao, et al. Impact of rotation resistance on fabric of granular materials. Rock and Soil Mechanics, 2020, 41(8): 2829-2838 (in Chinese)
    祁原, 黄俊杰, 陈明祥. 可破碎颗粒体在动力载荷下的耗能特性. 力学学报, 2015, 47(2): 252-259 (Qi Yuan, Huang Junjie, Chen Mingxiang. Energy dissipation characteristics of crushable granules under dynamic excitations. Journal of Theoretical and Applied Mechanics, 2015, 47(2): 252-259 (in Chinese) doi: 10.6052/0459-1879-14-145
    魏志刚, 陈海波. 一种新的橡胶材料弹性本构模型. 力学学报, 2019, 51(2): 473-483 (Wei Zhigang, Chen Haibo. A new elastic model for rubber-like materials. Chinese Jounal of Theoretical and Applied Mechanics, 2019, 51(2): 473-483 (in Chinese) doi: 10.6052/0459-1879-18-303
    谈炳东, 许进升, 孙朝翔等. 短纤维增强三元乙丙橡胶横观各向同性黏—超弹性本构模型. 力学学报, 2017, 49(3): 677-684 (Tan Bingdong, Xu Jinsheng, Sun Chaoxiang, et al. A transversely isotropic visco-hyperelastic constitutive model for short fiber reinforced EPDM. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 677-684 (in Chinese) doi: 10.6052/0459-1879-16-380
    Ai J, Chen JF, Rotter JM, et al. Assessment of rolling resistance models in discrete element simulations. Powder Technology, 2011, 206(3): 269-282 doi: 10.1016/j.powtec.2010.09.030
    Reynolds O. On rolling-friction. Philosophical Transactions of the Royal Society of London, 1876, 166(1): 155-174
    Tabor D. The mechanism of rolling friction. Philosophical Magazine Series 7, 1952, 43(345): 1055-1059 doi: 10.1080/14786441008520246
    Flom DG, Bueche AM. Theory of rolling friction for spheres. Journal of Applied Physics, 1960, 3(3): 1725-1730
    Greenwood JA, Minshall H, Tabor D. Hysteresis losses in rolling and sliding friction. Proceedings of the Royal Society of London, 1961, 259(1299): 480-507
    Brilliantov NV, Poschel T. Rolling friction of a viscous sphere on a hard plane. Europhysics Letters, 1998, 42(5): 511-516 doi: 10.1209/epl/i1998-00281-7
    Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Géotechnique, 1979, 29(1): 47-65
    刘嘉英, 周伟, 马刚等. 颗粒材料三维应力路径下的接触组构特性. 力学学报, 2019, 51(1): 26-35 (Liu Jiaying, Zhou Wei, Ma Gang, et al. Contact fabric characteristics of granular materials under three dimensionalstress paths. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 26-35 (in Chinese) doi: 10.6052/0459-1879-18-338
    刘巨保, 王明, 王雪飞等. 颗粒群碰撞搜索及 CFD-DEM 耦合分域求解的推进算法研究. 力学学报, 2021: 1-16 (Liu Jubao, Wang Ming, Wang Xuefei, et al. Research on particle swarm collision search and advancement algorithm for CFD-DEM coupling domain solving. Chinese Journal of Theoretical and Applied Mechanics, 2021: 1-16 (in Chinese)
    Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear band development by DEM. Journal of Engineering Mechanics, 1998, 124(3): 285-192 doi: 10.1061/(ASCE)0733-9399(1998)124:3(285)
    Rorato R, Arroyo M, Gens A, et al. Image-based calibration of rolling resistance in discrete element models of sand. Computers and Geotechnics, 2021, 131: 103929 doi: 10.1016/j.compgeo.2020.103929
    Zamir S, Mehari T, David W. A coupled sliding and rolling friction model for DEM calibration. Journal of Terramechanics, 2017, 72: 9-20 doi: 10.1016/j.jterra.2017.03.003
    Zhu HP, Yu AB. A theoretical analysis of the force models in discrete element method. Powder Technology, 2005, 161(2): 122-129
    Zhou YC, Wright BD, Yang RY, et al. Rolling friction in the dynamic simulation of sand-pile formation. Physica A Statistical Mechanics & Its Applications, 1999, 269(2-4): 536-553
    Brilliantov NV, Poeschel T. Rolling friction of a viscous sphere on a hard plane. Europhys. Lett., 2007, 42(5): 511-516
    孙珊珊, 苏勇, 季顺迎. 颗粒滚动-滑动转换机制及摩擦系数的试验研究. 岩土力学, 2009, 30(S1): 110-115 (Sun Shanshan, Su Yong, Ji Shunying. Experimental study of rolling-sliding transiton and friction coefficients of particles. Rock and Soil Mechanics, 2009, 30(S1): 110-115 (in Chinese)
    高政国, 王佃瑞, 张雅俊. 一种颗粒滚动阻力模型参数的动力试验测定装置. 中国专利, 202010913790.8. 2020-09-03

    (Gao Zhengguo, Wang Dianrui, Zhang Yajun. A dynamic test method for parameter identification of particle rolling resistance model. Chinese Patend, 202010913790.8. 2020-09-03 (in Chinese))
    王佃瑞. 颗粒滚动阻力与堆积稳定特性研究. [硕士论文]. 北京: 北京航空航天大学, 2020

    (Wang Dianrui. Study on rolling resistance and stacking stability characteristics of particles. [Master Thesis]. Beijing: Beihang University, 2020 (in Chinese))
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (732) PDF downloads(89) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint