Citation: | Zhou You, Zeng Zhong, Liu Hao, Zhang Liangqi. Effect of aspect ratio on thermocapillary convection instability of GaAs melt liquid bridge. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 301-315. DOI: 10.6052/0459-1879-21-227 |
[1] |
Schwabe D, Scharmann A. Marangoni convection in open boat and crucible. Journal of Crystal Growth, 1981, 52: 435-449 doi: 10.1016/0022-0248(81)90231-1
|
[2] |
Azami T, Nakamura S, Eguchi M, et al. The role of surface-tension-driven flow in the formation of a surface pattern on a Czochralski silicon melt. Journal of Crystal Growth, 2001, 233(1): 99-107
|
[3] |
Hu KX, Yan CY, Chen QS. Instability of thermocapillary–buoyancy convection in droplet migration. Physics of Fluids, 2019, 31(12): 122101 doi: 10.1063/1.5125846
|
[4] |
章绍能, 胡开鑫. 黏弹性液滴热毛细迁移的对流不稳定. 力学学报, 2021, 53(5): 1313-1323 (Zhang Shaoneng, Hu Kaixin. Convective instability in thermocapillary migration of a viscoelastic droplet. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1313-1323 doi: 10.6052/0459-1879-20-443
|
[5] |
Louvis E, Fox P, Sutcliffe CJ. Selective laser melting of aluminium components. Journal of Materials Processing Tech, 2011, 211(2): 275-284 doi: 10.1016/j.jmatprotec.2010.09.019
|
[6] |
Dai D, Gu D. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments. Materials and Design, 2014, 55: 482-491 doi: 10.1016/j.matdes.2013.10.006
|
[7] |
Smith MK, Davis SH. Instabilities of dynamic thermocapillary liquid layers Part 1. Convective instabilities. Journal of Fluid Mechanics, 1983, 132(1): 145-162
|
[8] |
Levenstam M, Amberg G. Hydrodynamical instabilities of thermocapillary flow in a half-zone. Journal of Fluid Mechanics, 1995, 297(1): 357-372
|
[9] |
Levenstam M, Amberg G, Carlberg T, et al. Experimental and numerical studies of thermocapillary convection in a floating zone like configuration. Journal of Crystal Growth, 1996, 158(3): 224-230 doi: 10.1016/0022-0248(95)00466-1
|
[10] |
Chen QS, Hu WR, Prasad V. Effect of liquid bridge volume on the instability in small-Prandtl-number half zones. Journal of Crystal Growth, 1999, 203(1-2): 261-268 doi: 10.1016/S0022-0248(99)00064-0
|
[11] |
Ichiro U, Shiho T, Hiroshi K. Oscillatory and chaotic thermocapillary convection in a half-zone liquid bridge. Physics of Fluids, 2003, 15(2): 408-416 doi: 10.1063/1.1531993
|
[12] |
Wanschura M, Shevtsova VM, Kuhlmann HC, et al. Convective instability mechanisms in thermocapillary liquid bridges. Physics of Fluids, 1995, 7(5): 912-925 doi: 10.1063/1.868567
|
[13] |
Chen G, Lizée A, Roux B. Bifurcation analysis of the thermocapillary convection in cylindrical liquid bridges. Journal of Crystal Growth, 1997, 180: 638-647
|
[14] |
Levenstam M, Amberg G, Winkler C. Instabilities of thermocapillary convection in a half-zone at intermediate Prandtl numbers. Physics of Fluids, 2001, 13(4): 807-816 doi: 10.1063/1.1337063
|
[15] |
Li K, Xun B, Imaishi N, et al. Thermocapillary flows in liquid bridges of molten tin with small aspect ratios. International Journal of Heat & Fluid Flow, 2008, 29(4): 1190-1196
|
[16] |
Rybicki A, Floryan JM. Thermocapillary Effects in Liquid Bridges I. Thermocapillary Convection. Physics of Fluids, 1998, 30(7): 1956-1972
|
[17] |
Velten R, Schwabe D, Scharmann A. The periodic instability of thermocapillary convection in cylindrical liquid bridges. Physics of Fluids A Fluid Dynamics, 1991, 3(2): 267-279 doi: 10.1063/1.858135
|
[18] |
Chen QS, Hu WR. Influence of liquid bridge volume on instability of floating half zone convection. International Journal of Heat & Mass Transfer, 1998, 41(6-7): 825-837
|
[19] |
Nishino K, Yano T, Kawamura H. Instability of thermocapillary convection in long liquid bridges of high Prandtl number fluids in microgravity. Journal of Crystal Growth, 2015, 420: 57-63 doi: 10.1016/j.jcrysgro.2015.01.039
|
[20] |
吴勇强, 段俐, 李永强等. 大普朗特数大液桥浮力−热毛细对流地面实验. 力学学报, 2012, 44(6): 981-989 (Wu Yongqiang, Duan Li, Li Yongqiang, et al. Ground experiments of bouyant thermocapillary convection of large scale liquid bridge with large prandtl number. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 981-989 doi: 10.6052/0459-1879-12-148
|
[21] |
王佳, 吴笛, 段俐等. 大尺寸液桥热毛细对流失稳性地面实验研究. 力学学报, 2015, 47(4): 580-586 (Wang Jia, Wu Di, Duan Li, et al. Ground experiments on the instability of thermocapillary convection in large scale liquid bridge. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 580-586 doi: 10.6052/0459-1879-14-309
|
[22] |
Kang Q, Wu D, Duan L, et al. The effects of geometry and heating rate on thermocapillary convection in the liquid bridge. Journal of Fluid Mechanics, 2019, 881: 951-982 doi: 10.1017/jfm.2019.757
|
[23] |
Wang J, Wu D, Duan L, et al. Ground experiment on the instability of buoyant-thermocapillary convection in large-scale liquid bridge with large Prandtl number. International Journal of Heat & Mass Transfer, 2017, 108: 2107-2119
|
[24] |
Liu H, Zeng Z, Yin L, et al. Influence of aspect ratio on the onset of thermocapillary flow instability in annular pool heated from inner wall. International Journal of Heat and Mass Transfer, 2019, 129: 746-752 doi: 10.1016/j.ijheatmasstransfer.2018.10.016
|
[25] |
Yin LM, Zhong Z, Qiu Z, et al. Linear stability analysis of thermocapillary flow in a slowly rotating shallow annular pool using spectral element method. International Journal of Heat & Mass Transfer, 2016, 97: 353-363
|
[26] |
Lehoucq RB, Sorensen DC. Deflation techniques for an implicitly restarted arnoldi iteration. Siam Journal on Matrix Analysis & Applications, 1996, 17(4): 789-821
|
[27] |
Lehoucq RB, Sorensen DC, Yang C. ARPACK users' guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. Siam, 1998
|
[28] |
Lehoucq RB. Implicitly restarted arnoldi methods and subspace iteration. SIAM Journal on Matrix Analysis and Applications, 23 (2): 551-562, 2001
|
[29] |
Boppana V, Gajjar J. Global flow instability in a lid-driven cavity. International Journal for Numerical Methods in Fluids, 2010, 62(8): 827-853
|
[30] |
Prange M, Wanschura M, Kuhlmann HC, et al. Linear stability of thermocapillary convection in cylindrical liquid bridges under axial magnetic fields. Journal of Fluid Mechanics, 1999, 394: 281-302 doi: 10.1017/S0022112099005698
|
[31] |
Liu H, Zeng Z, Yin L, et al. Effect of the Prandtl number on the instabilities of the thermocapillary flow in an annular pool. Physics of Fluids, 2019, 31(3): 034103 doi: 10.1063/1.5087113
|
[32] |
Zeng Z, Mizuseki H, Shimamura K. Marangoni convection in model of floating zone under mircogravity. Journal of Crystal Growth, 2001, 229: 601-604 doi: 10.1016/S0022-0248(01)01236-2
|
[1] | Li Zheng, Zhao Yuhao, Cui Haijian, Chen Mingfei. DYNAMIC BEHAVIOR OF ELASTIC BEAM SYSTEM COUPLED BY NONLINEAR ELEMENT WITH END[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 3023-3038. DOI: 10.6052/0459-1879-24-196 |
[2] | Gao Xiaowei, Liu Huayu, Cui Miao, Yang Kai, Lyu Jun, Peng Haifeng, Ruan Bo. GENERALIZED WEAK-FORM FREE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2741-2751. DOI: 10.6052/0459-1879-24-160 |
[3] | Like Deng, Dongdong Wang, Jiarui Wang, Junchao Wu. A GRADIENT SMOOTHING GALERKIN MESHFREE METHOD FOR THIN PLATE ANALYSIS WITH LINEAR BASIS FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 690-702. DOI: 10.6052/0459-1879-19-004 |
[4] | Wang Siqiang, Ji Shunying. NON-LINEAR CONTACT MODEL FOR SUPER-QUADRIC ELEMENT CONSIDERING THE EQUIVALENT RADIUS OF CURVATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1081-1092. DOI: 10.6052/0459-1879-18-103 |
[5] | Tan Shujun, Hou Jian, Wu Zhigang, Du Jianming. THE PARAMETRIC VARATIONAL PRINCIPLE AND NON-LINEAR FINITE ELEMENT METHOD FOR ANALYSIS OF ASTROMESH ANTENNA STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 770-775. DOI: 10.6052/0459-1879-14-126 |
[6] | Hu Dean, Han Xu, Xiao Yihua, Yang Gang. RESEARCH DEVELOPMENTS OF SMOOTHED PARTICLE HYDRODYNAMICS METHOD AND ITS COUPLING WITH FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639-652. DOI: 10.6052/0459-1879-13-092 |
[7] | Junbo Zhang, Xikui Li. A mesh-free method based on linear complementary model for gradient plasticity continuum[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 888-897. DOI: 10.6052/0459-1879-2009-6-2008-376 |
[8] | Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198 |
[9] | THE CONVERGENCE PROOF OF THE PLANE RATIONAL FINITE ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(6): 676-685. DOI: 10.6052/0459-1879-1997-6-1995-284 |
[10] | LOCAL ARC-LENGTH METHOD——A SOLUTION PROCEDURE FOR NON-LINEAR FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(1): 116-122. DOI: 10.6052/0459-1879-1997-1-1995-205 |