Citation: | Xia Qianjin, Lian Long, Qu Jianxiong, Wang Yongsheng, Xue Yuan, Wang Qiang, Zhao Lihao. Direct numerical simulation of drag reduction in turbulent boundary layers controlled by inclined blowing and sucking. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2454-2467 doi: 10.6052/0459-1879-21-223 |
[1] |
Kim J. Control of turbulent boundary layers. Physics of Fluids, 2003, 15(5): 1093-1105 doi: 10.1063/1.1564095
|
[2] |
Kim J. Physics and control of wall turbulence for drag reduction. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 2011, 369(1940): 1396-1411
|
[3] |
Choi H, Moin P, Kim J. Active turbulence control for drag reduction in wall-bounded flows. Journal of Fluid Mechanics, 1994, 262: 75-110 doi: 10.1017/S0022112094000431
|
[4] |
Chung YM, Talha T. Effectiveness of active flow control for turbulent skin friction drag reduction. Physics of Fluids, 2011, 23(2): 025102
|
[5] |
魏进家, 刘飞, 刘冬洁. 减阻用表面活性剂溶液分子动力学模拟研究进展. 力学学报, 2019, 51(4): 971-990 (Wei Jinjia, Liu Fei, Liu Dongjie. Progress in molecular dynamics simulations of surfactant solution for turbulent drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 971-990 (in Chinese) doi: 10.6052/0459-1879-18-372
|
[6] |
White CM, Mungal MG. Mechanics and prediction of turbulent drag reduction with polymer additives. Annual Review of Fluid Mechanics, 2008, 40: 235-256 doi: 10.1146/annurev.fluid.40.111406.102156
|
[7] |
Wang J, Koley SS, Katz J. On the interaction of a compliant wall with a turbulent boundary layer. Journal of Fluid Mechanics, 2020, 899: A20 doi: 10.1017/jfm.2020.446
|
[8] |
Kulik BM, Boiko AV, Lee I. Using two-layer compliant coatings to control turbulent boundary layer. Thermophysics and Aeromechanics, 2019, 26(1): 47-57 doi: 10.1134/S0869864319010056
|
[9] |
Benschop HOG, Greidanus AJ, Delfos R, et al. Deformation of a linear viscoelastic compliant coating in a turbulent flow. Journal of Fluid Mechanics, 2019, 859: 613-658 doi: 10.1017/jfm.2018.813
|
[10] |
Kulik VM. Concerning the features of deformation of a compliant coating by pressure pulsations in a turbulent boundary layer. Thermophysics and Aeromechanics, 2020, 27(1): 71-80 doi: 10.1134/S0869864320010060
|
[11] |
Garcia-Mayoral R, Jimenez J. Drag reduction by riblets. Philosophical Transactions Mathematical Physical & Engineering Sciences, 2011, 369(1940): 1412-1427
|
[12] |
李思成, 吴迪, 崔光耀等. 低雷诺数沟槽表面湍流/非湍流界面特性的实验研究. 力学学报, 2020, 52(6): 1632-1644 (Li Sicheng, Wu Di, Cui Guangyao, Wang Jinjun. Experimental study on properties of turbulent/non-turbulent interface over riblets surfaces at low reynolds numbers. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1632-1644 (in Chinese) doi: 10.6052/0459-1879-20-211
|
[13] |
Lee C, Kim J, Choi H. Suboptimal control of turbulent channel flow for drag reduction. Journal of Fluid Mechanics, 1998, 358: 245-258 doi: 10.1017/S002211209700815X
|
[14] |
Lee C, Kim J, Babcock D, et al. Application of neural networks to turbulence control for drag reduction. Physics of Fluids, 1997, 9: 1740-1747 doi: 10.1063/1.869290
|
[15] |
Fukagata K, Kasagi N. Suboptimal control for drag reduction via suppression of near-wall Reynolds shear stress. International Journal of Heat and Fluid Flow, 2004, 25: 341-350 doi: 10.1016/j.ijheatfluidflow.2004.02.015
|
[16] |
Pamiès M, Garnier E, Merlen A, et al. Response of a spatially developing turbulent budary layer to active control strategies in the frame work of opposition control. Physics of Fluids, 2007, 19: 108102 doi: 10.1063/1.2771659
|
[17] |
Yukinori K, Fukagata K. Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. Journal of Fluid Mechanics, 2011, 681: 154-172 doi: 10.1017/jfm.2011.219
|
[18] |
Min T, Kang SM, Speyer JL, et al. Sustained sub-laminar drag in a fully developed channel flow. Journal of Fluid Mechanics, 2006, 558: 309-318 doi: 10.1017/S0022112006000206
|
[19] |
Fukagata K, Iwamoto K, Kasagi N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Physics of Fluids, 2002, 14(11): L73-L76 doi: 10.1063/1.1516779
|
[20] |
Xia QJ, Huang WX, Xu CX, et al. Direct numerical simulation of spatially developing turbulent boundary layers with opposition control. Fluid Dynamics Research, 2015, 47(2): 025503 doi: 10.1088/0169-5983/47/2/025503
|
[21] |
许春晓. 壁湍流相干结构和减阻控制机理. 力学进展, 2015, 45(1): 111-140 (Xu Chunxiao. Coherent structures and dragreduction mechanism mechanism in wall turbulence. Advances in Mechanics, 2015, 45(1): 111-140 (in Chinese)
|
[22] |
Williams JE. Reynolds stress near a flexible surface responding to unsteady air flow. Bolt Beranek and Newman INC Reprort, Cambridge Mass. 1964
|
[23] |
Groskreutz R. An attempt to control boundary-layer turbulence with nonisotropic compliant walls. University Science Journal (Dar es Salaam)
|
[24] |
Carpenter PW, Morris PJ. The effect of anisotropic wall compliance on boundary-layer stability and transition. Journal of Fluid Mechanics, 1990, 218(1): 171-223 doi: 10.1017/S0022112090000970
|
[25] |
Fukagata K, Kern S, Chatelain P, et al. Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. Journal of Turbulence, 2008, 9: N35 doi: 10.1080/14685240802441126
|
[26] |
Xia QJ, Huang WX, Xu CX. Direct numerical simulation of a turbulent boundary layer over an anisotropic compliant wall. Acta Mechanica Sinica, 2019, 35(2): 384-400 doi: 10.1007/s10409-018-0820-x
|
[27] |
Kim K, Baek SJ, Sung HJ. An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids, 2002, 381: 125-381
|
[28] |
Lund TS. Generation of turbulent inflow data for spatially-developing boundary layer simulations. Journal of Computational Physics, 1998, 140: 223-258
|
[29] |
Xia QJ, Huang WX, Xu CX. Direct numerical simulation of turbulent boundary layer over a compliant wall. Journal of Fluids and Structures, 2017, 71: 126-142 doi: 10.1016/j.jfluidstructs.2017.03.005
|
[30] |
Nabae Y, Kawai K, Fukagata K. Prediction of drag reduction effect by streamwise traveling wave-like wall deformation in turbulent channel flow at practically high Reynolds numbers. International Journal of Heat and Fluid Flow, 2019, 82: 108550
|
[31] |
Floryan J, Zandi S. Reduction of pressure losses and increase of mixing in laminar flows through channels with long-wavelength vibrations. Journal of Fluid Mechanics, 2019, 864: 670-707 doi: 10.1017/jfm.2019.21
|
[32] |
Kaithakkal AJ, Kametani Y, Hasegawa Y. Dissimilarity between turbulent heat and momentum transfer induced by a streamwise travelling wave of wall blowing and suction. Journal of Fluid Mechanics, 2020, 886: 1045 doi: 10.1017/jfm-2019.1045
|
[33] |
Kasagi N, Hasegawa Y, Fukagata K. Toward cost-effective control of wall turbulence for skin friction drag reduction//Advances in Turbulence XII, Proceedings of the 12th Euromech European Turbulence Conference, Berlin, Heidelberg: Springer, 2009
|