Citation: | Qu Tongming, Feng Yuntian, Wang Mengqi, Zhao Tingting, Di Shaocheng. Constitutive relations of granular materials by integrating micromechanical knowledge with deep learning. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2404-2415 doi: 10.6052/0459-1879-21-221 |
[1] |
孙其诚, 辛海丽, 刘建国等. 颗粒体系中的骨架及力链网络. 岩土力学, 2009, 30(S1): 83-87 (Sun Qicheng, Xin Haili, Liu Jianguo, et al. Skeleton and force chain network in static granular material. Rock and Soil Mechanics, 2009, 30(S1): 83-87 (in Chinese)
|
[2] |
罗汀, 高智伟, 万征等. 土剪胀性的应力路径相关规律及其模拟. 力学学报, 2010, 42(1): 93-101 (Luo Ting, Gao Zhiwei, Wan Zheng, et al. Influence of the stress path on dilatancy of soils and its modeling. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 93-101 (in Chinese)
|
[3] |
路德春, 姚仰平. 砂土的应力路径本构模型. 力学学报, 2005, 37(4): 451-459 (Lu Dechun, Yao Yangping. Constitutive model of sand considering complex stress paths. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 451-459 (in Chinese) doi: 10.3321/j.issn:0459-1879.2005.04.010
|
[4] |
刘嘉英, 周伟, 马刚等. 颗粒材料三维应力路径下的接触组构特性. 力学学报, 2019, 51(1): 26-35 (Liu Jiaying, Zhou Wei, Ma Gang, et al. Contact fabric characteristics of granular materials under three dimensional stress paths. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 26-35 (in Chinese)
|
[5] |
钱劲松, 陈康为, 张磊. 粒料固有各向异性的离散元模拟与细观分析. 力学学报, 2018, 50(5): 1041-1050 (Qian Jinsong, Chen Kangwei, Zhang Lei. Simulation and micro-mechanics analysis of inherent anisotropy of granular by distinct element method. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1041-1050 (in Chinese)
|
[6] |
万征, 孟达. 复杂加载条件下的砂土本构模型. 力学学报, 2018, 50(4): 929-948 (Wan Zheng, Meng Da. A constitutive model for sand under complex loading conditions. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 929-948 (in Chinese)
|
[7] |
姚仰平, 张民生, 万征等. 基于临界状态的砂土本构模型研究. 力学学报, 2018, 50(3): 589-598 (Yao Yangping, Zhang Minsheng, Wan Zheng, et al. Constitutive model for sand based on the critical state. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 589-598 (in Chinese)
|
[8] |
Guo N, Zhao J. A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. International Journal for Numerical Methods in Engineering, 2014, 99(11): 789-818 doi: 10.1002/nme.4702
|
[9] |
Ellis G, Yao C, Zhao R, et al. Stress-strain modeling of sands using artificial neural networks. Journal of Geotechnical Engineering, 1995, 121(5): 429-435 doi: 10.1061/(ASCE)0733-9410(1995)121:5(429)
|
[10] |
Penumadu D, Zhao R. Triaxial compression behavior of sand and gravel using artificial neural networks (ANN). Computers and Geotechnics, 1999, 24(3): 207-230 doi: 10.1016/S0266-352X(99)00002-6
|
[11] |
Ghaboussi J, Pecknold DA, Zhang M, et al. Autoprogressive training of neural network constitutive models. International Journal for Numerical Methods in Engineering, 1998, 42(1): 105-126 doi: 10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V
|
[12] |
Shin H, Pande G. On self-learning finite element codes based on monitored response of structures. Computers and Geotechnics, 2000, 27(3): 161-178 doi: 10.1016/S0266-352X(00)00016-1
|
[13] |
Wang K, Sun W. Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 216-241 doi: 10.1016/j.cma.2018.11.026
|
[14] |
Wang K, Sun W, Du Q. A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation. Computational Mechanics, 2019, 64(2): 467-499 doi: 10.1007/s00466-019-01723-1
|
[15] |
Wang K, Sun W, Du Q. A non-cooperative meta-modeling game for automated third-party calibrating, validating and falsifying constitutive laws with parallelized adversarial attacks. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113514 doi: 10.1016/j.cma.2020.113514
|
[16] |
Zhang P, Yin Z, Jin Y, et al. An AI-based model for describing cyclic characteristics of granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(9): 1315-1335 doi: 10.1002/nag.3063
|
[17] |
Karapiperis K, Stainier L, Ortiz M, et al. Data-Driven multiscale modeling in mechanics. Journal of the Mechanics and Physics of Solids, 2021, 147: 104239 doi: 10.1016/j.jmps.2020.104239
|
[18] |
Qu T, Di S, Feng Y, et al. Towards data-driven constitutive modelling for granular materials via micromechanics-informed deep learning. International Journal of Plasticity, 2021, 144: 103046 doi: 10.1016/j.ijplas.2021.103046
|
[19] |
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks, 1989, 2(5): 359-366 doi: 10.1016/0893-6080(89)90020-8
|
[20] |
Qu T, Di S, Feng Y, et al. Deep learning predicts stress-strain relations of granular materials based on triaxial testing data. Computer Modeling in Engineering & Sciences, 2021, 128(1): 129-144
|
[21] |
陈生水. 土的本构模型研究之浅见——读李广信、杨光华文章有感. 岩土工程学报, 1992, 14(2): 89-92 (Chen Shengshui. On the study of constitutive models of soil—thoughts after reading the paper written by Li Guangxin and Yang Guanghua. Chinese Journal of Geotechnical Engineering, 1992, 14(2): 89-92 (in Chinese) doi: 10.3321/j.issn:1000-4548.1992.02.014
|
[22] |
Kawamoto R, Andò E, Viggiani G, et al. All you need is shape: Predicting shear banding in sand with LS-DEM. Journal of the Mechanics and Physics of Solids, 2018, 111: 375-392 doi: 10.1016/j.jmps.2017.10.003
|
[23] |
Qu T, Feng Y, Wang M. An adaptive granular representative volume element model with an evolutionary periodic boundary for hierarchical multiscale analysis. International Journal for Numerical Methods in Engineering, 2021, 122(9): 2239-2253 doi: 10.1002/nme.6620
|
[24] |
O'Sullivan C. Particulate Discrete Element Modelling: a Geomechanics Perspective. London: CRC Press, 2011.
|
[25] |
Qu T, Feng Y, Zhao T, et al. A hybrid calibration approach to Hertz-type contact parameters for discrete element models. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(9): 1281-1300 doi: 10.1002/nag.3061
|
[26] |
Qu T, Feng Y, Wang M, et al. Calibration of parallel bond parameters in bonded particle models via physics-informed adaptive moment optimisation. Powder Technology, 2020, 366: 527-536 doi: 10.1016/j.powtec.2020.02.077
|
[27] |
Feng Y. An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Basic framework and general contact model. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113454 doi: 10.1016/j.cma.2020.113454
|
[28] |
Feng Y. An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113493 doi: 10.1016/j.cma.2020.113493
|
[29] |
Sibille L, Benahmed N, Darve F. Constitutive response predictions of both dense and loose soils with a discrete element model. Computers and Geotechnics, 2021, 135: 104161 doi: 10.1016/j.compgeo.2021.104161
|
[30] |
Qu T, Feng Y, Wang Y, et al. Discrete element modelling of flexible membrane boundaries for triaxial tests. Computers and Geotechnics, 2019, 115: 103154 doi: 10.1016/j.compgeo.2019.103154
|
[31] |
马刚, 刘嘉英, 常晓林等. 堆石体在真三轴应力状态下的非共轴性与剪胀特性. 中南大学学报(自然科学版), 2016, 47(5): 1697-1707 (Ma Gang, Liu Jiaying, Chang Xiaolin, et al. Non-coaxiality and dilatancy of rockfill materials under true triaxial stress condition. Journal of Central South University (Science and Technology)
|
[32] |
杨光华. 土的现代本构理论的发展回顾与展望. 岩土工程学报, 2018, 40(8): 1363-1372 (Yang Guanghua. Review of progress and prospect of modern constitutive theories for soils. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1363-1372 (in Chinese)
|