EI、Scopus 收录
Volume 53 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Li Zigang, Yan Wang, Kang Jiaqi, Jiang Jun, Hong Ling. Data-driven global dynamics of the indian ocean. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2595-2602 doi: 10.6052/0459-1879-21-218
Citation: Li Zigang, Yan Wang, Kang Jiaqi, Jiang Jun, Hong Ling. Data-driven global dynamics of the indian ocean. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2595-2602 doi: 10.6052/0459-1879-21-218


doi: 10.6052/0459-1879-21-218
  • Received Date: 2021-05-21
  • Accepted Date: 2021-08-16
  • Available Online: 2021-08-17
  • Publish Date: 2021-09-18
  • The inherent law and mechanism, underlying the complex ocean currents in sea, can offer scientific support for marine engineering, such as search and rescue at sea, pollutant diffusion forecast, shipping route design. In this paper, the generalized cell mapping method based on the idea of space discretization is proposed to carry out the global analysis for finding long-term and short-term dynamic structures underlying the Indian Ocean. Taking the typical monsoon and climate features in the ocean region into account, the one step transition probability matrices in different interval levels are created based on the drifter database from 1979—2019 to describe the evolutions of state of the system. Then, the long-term and short-term profiles of attraction (vortex core) and its region of influence (vortex area) are revealed and characterized by means of topological analysis. In comparison, the predicted distributions and features of responses are highly consistent with real observations of drifters to verify the rationality and validity of the proposed method and results. It is shown that the long-term vortex area is obviously presented in the region of latitude 20° to 45° south, longitude 40° to 96° east, which causes the dynamic concentration of drifters on the region, while the repellency for drifter trajectories is also observed both near the south of latitude 40° south and the equator. Meanwhile, the short-term dynamic vortices can dominate transient paths and tendency of drifters to induce the counterclockwise circulation of current in the southern Indian Ocean.


  • loading
  • [1]
    Kettyah CC, Andrew MM. The north atlantic oscillation as a source of stochastic forcing of the wind-driven ocean circulation. Dynamics of Atmospheres and Oceans, 2007, 43: 151-170 doi: 10.1016/j.dynatmoce.2006.12.002
    Poulain PM, Gerin R, Mauri E, el al. Wind effects on drogued and undrogued drifters in the eastern Mediterranean. Journal of Atmospheric and Oceanic Technology, 2009, 26: 1144-1156 doi: 10.1175/2008JTECHO618.1
    杜岩, 陈举, 经志友等. 南海开放共享航次关键科学问题的思考——从多尺度海洋动力学角度出发. 热带海洋学报, 2020, 39(6): 1-17 (Du Yan, Chen Ju, Jing Zhiyou, et al. Thoughts on the key scientific issues of Shiptime Sharing Project/Open Cruise in the South China Sea—From the perspective of multi-scale ocean dynamics. Journal of Tropical Oceanography, 2020, 39(6): 1-17 (in Chinese)
    郑瑞玺, 经志友, 罗士浩. 南海北部反气旋涡旋边缘的次中尺度动力过程分析. 热带海洋学报, 2018, 37(3): 19-25 (Zheng Ruixi, Jing Zhiyou, Luo Shihao. Analysis of sub-mesoscale dynamic processes in the periphery of anticyclonic eddy in the northern South China Sea. Journal of Tropical Oceanography, 2018, 37(3): 19-25 (in Chinese)
    Serra M, Sathe P, Rypina I, el al. Search and rescue at sea aided by hidden flow structures. Nature Communications, 2020, 11: 2525 doi: 10.1038/s41467-020-16281-x
    郭凯旋. 危险化学品海上漂移扩散数值模拟研究综述. 海洋预报, 2021, 38(2): 91-97 (Guo Kaixuan. Review on the numerical simulation of the drift and diffusion of marine hazardous chemicals. Marine Forecasts, 2021, 38(2): 91-97 (in Chinese)
    王驰, 梁法春, 何振楠等. 波浪作用下的海底管道溢油扩散运移规律. 河北工业科技, 2021, 38(3): 172-179 (Wang Chi, Liang Fachun, He Zhennan, et al. The law of diffusion and migration of oil spill from submarine pipelines under wave action. Hebei Journal of Industrial Science and Technology, 2021, 38(3): 172-179 (in Chinese)
    连汝续, 张燕玲, 黄兰. 引入地形因素的海洋动力学方程组整体弱解的稳定性. 河南师范大学学报(自然科学版), 2021, 49(3): 18-26 (Lian Ruxu, Zhang Yanling, Huang Lan. The stability of global weak solutions to the ocean dynamics equations with topography effects. Journal of Henan Normal University (Natural Science Edition), 2021, 49(3): 18-26 (in Chinese)
    Varghese VA, Saha N. Investigation of stochastic nonlinear dynamics of ocean engineering systems through path integration. Physica D, 2020, 402(15): 132227
    Yeo K, Melnyk I. Deep learning algorithm for data-driven simulation of noisy dynamical system. Journal of Computational Physics, 2019, 376: 1212-1231 doi: 10.1016/j.jcp.2018.10.024
    Guo LL, Wu P, Lou SW. A multi-feature extraction technique based on principal component analysis for nonlinear dynamic process monitoring. Journal of Process Control, 2020, 85: 159-172 doi: 10.1016/j.jprocont.2019.11.010
    Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Computers & Chemical Engineering, 2009, 33: 795-814
    薛红娟, 顾耀林. 拓扑分析在海洋特征提取中的应. 计算机工程, 2009, 35(3): 263-265 (Xue Hongjuan, Gu Yaolin. Application of topological analysis in ocean feature extraction. Computer Engineering, 2009, 35(3): 263-265 (in Chinese) doi: 10.3969/j.issn.1000-3428.2009.03.090
    Capuano P, Lauro ED, Martino SD, et al. Analysis of water level oscillations by using methods of nonlinear dynamics. International Journal of Modern Physics B, 2009, 23(28): 5530-5542
    Dong Y, Qin SJ. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. Journal of Process Control, 2018, 67: 1-11 doi: 10.1016/j.jprocont.2017.05.002
    Schouten JC, Takens F, Bleek CM. Estimation of the dimension of a noisy attractor. Physical Review E, 1994, 50(3): 1851-1861 doi: 10.1103/PhysRevE.50.1851
    Röhrs J, Sutherland G, Jeans G, et al. Analysis of flight MH370 potential debris trajectories using ocean observations and numerical model results. Journal of Operational Oceanography, 2016, 9(2): 126-138 doi: 10.1080/1755876X.2016.1248149
    Miron P, Beron-Vera FJ, Olascoaga MJ, et al. Markov-chain-inspired search for MH370. Chaos, 2019, 29: 041105 doi: 10.1063/1.5092132
    Grossi MD, Kubat M, Özgökmen TM. Predicting particle trajectories in oceanic flows using artificial neural networks. Ocean Modelling, 2020, 156: 101707 doi: 10.1016/j.ocemod.2020.101707
    Li ZG, Jiang J, Hong L, et al. A subdomain synthesis method for global analysis of nonlinear dynamical systems based on cell mapping. Nonlinear Dynamics, 2019, 95: 715-726 doi: 10.1007/s11071-018-4592-4
    Yue XL, Xu Y, Xu W, et al. Global invariant manifolds of dynamical systems with the compatible cell mapping method. International Journal of Bifurcation and Chaos, 2019, 29(8): 1950105 doi: 10.1142/S0218127419501050
    Xiong FR, Qin ZC, Ding Q, et al. Parallel cell mapping method for global analysis of high-dimensional nonlinear dynamical systems. Journal of Applied Mechanics, 2015, 82(11): 111010 doi: 10.1115/1.4031149
    徐伟, 岳晓乐, 韩群. 胞映射方法及其在非线性随机动力学中的应用. 动力学与控制学报, 2017, 15(3): 200-208 (Xu Wei, Yue Xiaole, Han Qun. Cell mapping method and its applications in nonlinear stochastic dynamical system. Journal of Dynamic and Control, 2017, 15(3): 200-208 (in Chinese) doi: 10.6052/1672-6553-2017-023
    徐伟, 孙春艳, 孙建桥等. 胞映射方法的研究和进展. 力学进展, 2013, 43(1): 91-100 (Xu Wei, Sun Chunyan, Sun Jianqiao, el al. Development and study on cell mapping method. Advances in mechanics, 2013, 43(1): 91-100 (in Chinese)
    Hsu CS. Cell to Cell Mapping: A Method of Global Analysis for Nonlinear Systems, Berlin: Springer, 1987
    Li ZG, Jiang J, Hong L, et al. On the data-driven generalized cell mapping. International Journal of Bifurcation and Chaos, 2019, 29(14): 1950204 doi: 10.1142/S0218127419502043
    Huang Y, Wu B, Li T, et al. Interdecadal Indian ocean basin mode driven by interdecadal pacific oscillation: A season-dependent growth mechanism. Journal of Climate, 2019, 32(7): 2057-2073 doi: 10.1175/JCLI-D-18-0452.1
    Maximenko N, Hafner J, Niiler P. Pathways of marine debris derived from trajectories of Lagrangian drifters. Marine Pollution Bulletin, 2012, 65(1-3): 51-62 doi: 10.1016/j.marpolbul.2011.04.016
    Xie JP, Zhu J. A dataset of global ocean surface currents for 1999-2007 derived from argo float trajectories: A comparison with surface drifter and TAO measurements. Atmospheric & Oceanic Science Letters, 2009, 2(2): 97-102
    LaCasce JH. Statistics from Lagrangian observations. Progress in Oceanography, 2018, 77: 1-29
    Chevillard L, Meneveau C. Lagrangian dynamics and statistical geometric structure of turbulence. Physical Review Letters, 2006, 97: 174501 doi: 10.1103/PhysRevLett.97.174501
    朱金杰, 陈朕, 孔琛等. 基于大偏差理论的随机动力学研究. 力学进展, 2020, 50(1): 202010 (Zhu Jinjie, Chen Zheng, Kong Chen, et al. The researches on the stochastic dynamics based on the large deviation theory. Advances in Mechanics, 2020, 50(1): 202010 (in Chinese)
    Lev MV, Lab S. Experimental drift mapping of Indian ocean gyre aircraft debris. Open Journal of Applied Sciences, 2016, 6: 95-99
    Schott FA, Xie SP, McCreary JP. Indian ocean circulation and climate variability. Reviews of Geophysics, 2009, 47: 2007RG000245
    Sun JQ, Xiong FR, Schutze O, et al. Cell Mapping Methods− Algorithmic Approaches and Applications. Springer, Berlin, 2019
    Maximenko N, Hafner J. Marine debris drift model simulates MH370 crash site and flow paths//IPRC, Honolulu, 2015
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (372) PDF downloads(51) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint