EI、Scopus 收录
Volume 53 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Liu Zhentao, Xiao Li, He Kun, Wang Lei. Numerical study on two-dimensional electro-thermal convection in a partially heated cavity. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2477-2492 doi: 10.6052/0459-1879-21-205
Citation: Liu Zhentao, Xiao Li, He Kun, Wang Lei. Numerical study on two-dimensional electro-thermal convection in a partially heated cavity. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2477-2492 doi: 10.6052/0459-1879-21-205


doi: 10.6052/0459-1879-21-205
  • Received Date: 2021-05-14
  • Accepted Date: 2021-08-07
  • Available Online: 2021-08-08
  • Publish Date: 2021-09-18
  • In recent years, the active enhancement of heat transfer with electric field has drawn a wide attention in the field of heat transfer. Since the complex mathematical model as well as the strong nonlinear couplings between multi-physics, the theoretical analysis and experimental studies on this field are relatively few. In this paper, the lattice Boltzmann method is adopted to studied the two-dimensional electro-thermal convection in a partially heated cavity. The effects of dimensionless parameters such as Rayleigh number $Ra$, electric Rayleigh number $T$, length of electrode plate $h$, and the distance from the center of electrode plate to the lower wall $\delta$, on the heat transfer efficiency are investigated, and the bifurcation structure of the electro-thermal convection is also analyzed. Numerical results show that as the number of electric Rayleigh number $T$ increases, the heat transfer efficiency gradually increases, and the bifurcation type for electric Rayleigh number $T$ is usually subcritical. while the bifurcation type for the Rayleigh number $Ra$ is supercritical. In addition, when the electric Rayleigh number $T$ is larger enough, the coulomb force is dominant over the buoyancy force, and the effect of the Rayleigh number $Ra$ on heat transfer coefficient is insignificant. Further, a comparison of the heat transfer efficiency of the various electrode positions shows that the heat transfer efficiency is optimal when the electrode plate is in the middle of the left sidewall, and the smaller the length of the electrode plate, the more efficient of the heat transfer. The results of this article extend the existing two-dimensional electro-thermal convection model, and it can provide a reference for theoretical analysis of other electro-thermal convection problems with non-uniform temperature boundary.


  • loading
  • [1]
    Melcher JR, Taylor GI. Electrohydrodynamics: a review of the role of interfacial shear stersses. Annual Review of Fluid Mechanics, 1969, 1: 111-146 doi: 10.1146/annurev.fl.01.010169.000551
    Castellanos A, Atten P. Oscillatory and steady convection in dielectric liquid layers subjected to unipolar injection and temperature gradient. Physics of Fluids., 1984, 27(7): 1607-1615 doi: 10.1063/1.864816
    Castellanos A. Coulomb-driven Convection in Electrohydrodynamics. IEEE Transactions on Electrical Insulation, 1991, 26(6): 1201-1215 doi: 10.1109/14.108160
    Laohalertdecha S, Naphon P, Wongwises S. A review of electrohydrodynamic enhancement of heat transfer. Renewable and Sustainable Energy Reviews, 2007, 11: 858-876 doi: 10.1016/j.rser.2005.07.002
    Suman B. A steady state model and maximum heat transport capacity of an electrohydrodynamically augmented micro-grooved heat pipe. International Journal of Heat and Mass Transfer, 2006, 49: 3957-3967 doi: 10.1016/j.ijheatmasstransfer.2006.04.011
    Léal L, Miscevic M, Lavieille P, et al. An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials. International Journal of Heat and Mass Transfer, 2013, 61: 505-524 doi: 10.1016/j.ijheatmasstransfer.2013.01.083
    Atten P. Electroconvection and its effect on heat transfer. IEEE llansactions on Electrical Insulation, 1988, 23(4): 659-668 doi: 10.1109/14.7338
    Mccluskey FMJ, Atten P. Heat transfer enhancement by electroconvection resulting from an injected space charge between parallel plates. International Journal of Heat and Mass Transfer, 1991, 34(9): 2237-2250 doi: 10.1016/0017-9310(91)90050-O
    Wu Jian, Traore PH, Pérez AT. Numerical analysis of the subcritical feature of electro-thermo-convection in a plane layer of dielectric liquid. Physica D, 2015, 311-312: 45-47 doi: 10.1016/j.physd.2015.09.004
    Traore PH, Pérez AT, Koulova D, et al. Numerical modelling of finite-amplitude electro-thermo-convection in a dielectric liquid layer subjected to both unipolar injection and temperature gradient. Journal of Fluid Mechanics, 2010, 658: 279-293 doi: 10.1017/S0022112010001709
    Dantchi K, Philippe T, Romat H, et al. Numerical simulations of electro-thermo-convection and heat transfer in 2D cavity. Journal of Electrostatics, 2013, 71: 341-344 doi: 10.1016/j.elstat.2012.12.043
    Luo K, Wu J, Yi HL, et al. Lattice Boltzmann modelling of electro-thermo-convection in a planar layer of dielectric liquid subjected to unipolar injection and thermal gradient. International Journal of Heat and Mass Transfer, 2016, 103: 832-846 doi: 10.1016/j.ijheatmasstransfer.2016.07.108
    Lu ZM, Liu GQ, Wang BF. Flow structure and heat transfer of electro-thermo-convection in a dielectric liquid layer. Physics of Fluids, 2019, 31(6): 064103 doi: 10.1063/1.5097562
    Hu Y, Li DC, Niu XD, et al. An immersed boundary-lattice Boltzmann method for electro-thermo-convection in complex geometries. International Journal of Thermal Sciences, 2019, 140: 280-297 doi: 10.1016/j.ijthermalsci.2019.02.015
    Wang YZ, Qin GL, He WQ, et al. Spectral element method for numerical simulation of ETHD enhanced heat transfer in an enclosure with uniform and sinusoidal temperature boundary conditions. International Journal of Heat and Mass Transfer, 2019, 141: 949-963 doi: 10.1016/j.ijheatmasstransfer.2019.07.010
    Chand R, Rana GC, Yadav D. Electrothermo convection in a porous medium saturated by nanofluid. Journal of Applied Fluid Mechanics, 2016, 9(3): 1081-1088 doi: 10.18869/acadpub.jafm.68.228.24858
    Srivastava AK. Stability analysis of Electro-thermo convection of binary fluid with chemical reaction in a horizontal porous layer. Alexandria Engineering Journal, 2016, 55: 3153-3171 doi: 10.1016/j.aej.2016.07.030
    Wu J, Traore PH. A finite-volume method for electro-thermo convective phenomena in a plane layer of dielectric liquid. Numerical Heat Transfer, 2015, 68: 471-500 doi: 10.1080/10407782.2014.986410
    Hassen W, Elkhazen MI, Traoré PH. Numerical study of the electro–thermo-convection in an annular dielectric layer subjected to a partial unipolar injection. International Journal of Heat and Fluid Flow, 2014, 50: 201-208 doi: 10.1016/j.ijheatfluidflow.2014.08.003
    Hassen W, Traore PH, Borjini MN. Numerical study of electro-thermo-convection in a differentially heated cavity filled with a dielectric liquid subjected to partial unipolar injection. International Journal of Engineering, 2015, 28(9): 1343-1350
    Poulikakos D. Natural convection in a confined fluid-filled space driven by a single vertical wall with warm and cold regions. Journal of Heat Transfer, 1985, 107: 867-876 doi: 10.1115/1.3247515
    Sathiyamoorthy M, Basak T, Roy S, et al. Steady natural convection flow in a square cavity filled with a porous medium for linearly heated side wall(s). International Journal of Heat and Mass Transfer, 2007, 50: 1892-1901 doi: 10.1016/j.ijheatmasstransfer.2006.10.010
    Bilgen E, Yedder RB. Natural convection in enclosure with heating and cooling by sinusoidal temperature profiles on one side. International Journal of Heat and Mass Transfer, 2007, 50: 139-150 doi: 10.1016/j.ijheatmasstransfer.2006.06.027
    Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 2008, 29: 1326-1336 doi: 10.1016/j.ijheatfluidflow.2008.04.009
    Wang L, Yang XG, Huang CS, et al. Hybrid lattice Boltzmann-TVD simulation of natural convection of nanofluids in a partially heated square cavity using Buongiorno's model. Applied Thermal Engineering, 2019, 146: 318-327 doi: 10.1016/j.applthermaleng.2018.09.109
    Li TF, He XR, Luo K, et al. Oscillatory flows of electro-thermo-convection in eccentric annulus. International Journal of Heat and Mass Transfer, 2019, 134: 920-932 doi: 10.1016/j.ijheatmasstransfer.2019.01.090
    Luo K, Li TF, Wu J, et al. Mesoscopic simulation of electrohydrodynamic effects on laminar natural convection of a dielectric liquid in a cubic cavity. Physics of fluids, 2018, 30: 103601 doi: 10.1063/1.5047283
    吴健, 张蒙齐, 田方宝. 三维方腔介电液体电对流的数值模拟研究. 力学学报, 2018, 50(6): 1458-1469 (Wu Jian, Zhang Mengqi, Tian Fangbao. Numerical analysis of three-dimensional electro-convection of dielectric liquids in a cubical cavity. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1458-1469 (in Chinese) doi: 10.6052/0459-1879-18-301
    Babaei R, Heidarinejad G, Pasdarshahri H. Performance improvement of EHD-enhanced water evaporation process using optimizing the wire electrode position and the wall-mounted electrode length. Heat and Mass Transfer, 2018, 54: 3785-3796 doi: 10.1007/s00231-018-2404-5
    罗康. 电热对流格子-Boltzmann模拟及稳定性分析. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2017

    (Luo Kang. Lattice bolztmann simulations of electro-thermo-hydrodynamic flows and its stability analysis. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2017 (in Chinese))
    Li TF, Luo K, Yi HL. Effect of unipolar charge injection direction on the onset of Rayleigh-Bénard convection: a lattice Boltzmann study. International Communications in Heat and Mass Transfer., 2020, 112: 104496 doi: 10.1016/j.icheatmasstransfer.2020.104496
    Chen SY, Doolen GD. Lattice boltzmann method for fluid flows. Annual Review Of Fluid Mechanics, 1998, 30: 329-363 doi: 10.1146/annurev.fluid.30.1.329
    Xu A, Shi L, Zhao TS. Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management. International Journal of Heat and Mass Transfer, 2017, 109: 577-588 doi: 10.1016/j.ijheatmasstransfer.2017.02.032
    Wang L, Zhao Y, Yang XG, et al. A lattice Boltzmann analysis of the conjugate natural convection in a square enclosure with a circular cylinder. Applied Mathematical Modelling, 2019, 71: 31-44 doi: 10.1016/j.apm.2019.02.012
    吴锤结, 周菊光. 悬浮颗粒运动的格子Boltzmann数值模拟. 力学学报, 2004, 36(2): 151-162 (Wu Chuijie, Zhou Juguang. Numerical simulations of suspension motion of irregular shaped particles via the lattice boltzmann method. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2): 151-162 (in Chinese) doi: 10.3321/j.issn:0459-1879.2004.02.004
    李洋, 苏婷, 梁宏等. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, 2018, 67(22): 224701 (Li Yang, Su Ting, Liang Hong, et al. Phase feld lattice Boltzmann model for two-phase flow coupled with additional interfacial force. Acta Physica Sinica, 2018, 67(22): 224701 (in Chinese) doi: 10.7498/aps.67.20181230
    孟旭辉, 王亮, 郭照立. 多孔介质中流固作用力的动量交换计算. 力学学报, 2014, 46(4): 525-532 (Meng Xuhui, Wang Liang, Guo Zhaoli. Force evaluation using momentum-exchange method in porous media. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 525-532 (in Chinese) doi: 10.6052/0459-1879-13-359
    程志林, 宁正福, 曾彦等. 格子Boltzmann方法模拟多孔介质惯性流的边界条件改进. 力学学报, 2019, 51(1): 124-134 (Cheng Zhilin, Ning Zhengfu, Zeng Yan, et al. Lattice Boltzmann simulation of fluid flow in porous media using a modified boundary condition. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 124-134 (in Chinese) doi: 10.6052/0459-1879-18-179
    Guo ZL, Shi BC, Wang NC. Lattice BGK model for incompressible Navier–Stokes equation. Journal of Computational Physics, 2000, 165: 288-306 doi: 10.1006/jcph.2000.6616
    Guo ZL, Zheng CG, Shi BC. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical Review E, 2002, 65: 046308 doi: 10.1103/PhysRevE.65.046308
    He K, Chai ZH, Wang L, et al. Numerical investigation of electro–thermo-convection with a solid–liquid interface via the lattice Boltzmann method. Physics of Fluids, 2021, 33: 037128 doi: 10.1063/5.0041574
    Peng Y, Chew YT, Shu C. Numerical simulation of natural convection in a concentric annulus between a square outer cylinder and a circular inner cylinder using the Taylor-series-expansion and least-squares-based lattice Boltzmann method. Physical Review E, 2003, 67: 026701 doi: 10.1103/PhysRevE.67.026701
    Wang L, Chai ZH, Shi BC. Regularized lattice Boltzmann simulation of double-diffusive convection of power-law nanofluids in rectangular enclosures. International Journal of Heat and Mass Transfer, 2016, 102: 381-395 doi: 10.1016/j.ijheatmasstransfer.2016.06.041
    Guo ZL, Zheng CG, Shi BC. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chinese Physics, 2002, 11(4): 366-374 doi: 10.1088/1009-1963/11/4/310
    Wu J, Traoré P, Vázquez PA. Onset of convection in a finite two-dimensional container due to unipolar injection of ions. Physic Review E, 2013, 88: 053018 doi: 10.1103/PhysRevE.88.053018
    Luo K, Wu J, Yi HL. Lattice Boltzmann model for Coulomb-driven flows in dielectric liquids. Physic Review E, 2016, 93: 023309 doi: 10.1103/PhysRevE.93.023309
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (484) PDF downloads(93) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint