Citation: | Yang Su, Zhang Huiqin, Yu Wangxin, Cheng Pengda, Liu Qingquan, Wang Xiaoliang. Numerical study of interaction between granular flow and an array of obstacles by a bed-fitted depth-averaged model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3399-3412. DOI: 10.6052/0459-1879-21-200 |
[1] |
夏添. 震区泥石流危害性评价及预警减灾系统研究. [博士论文]. 成都: 成都理工大学, 2013
(Xia Tian. Hazard assessment of debris flow in earthquakeregion and system design for warning and mitigation. [PhD Thesis]. Chengdu: Chengdu University of Technology, 2013 (in Chinese))
|
[2] |
Tang C, Rengers N, van Asch ThWJ, et al. Triggering conditions and depositional characteristics of a disastrous debris flow event in Zhouqu city, Gansu province, northwestern China. Natural Hazards and Earth System Sciences, 2011, 11(11): 2903-2912 doi: 10.5194/nhess-11-2903-2011
|
[3] |
Pudasaini SP, Mergili M. A multi-phase mass flow model. Journal of Geophysical Research-Earth Surface, 2019, 124(12): 2920-2942 doi: 10.1029/2019JF005204
|
[4] |
刘传正, 苗天宝, 陈红旗等. 甘肃舟曲2010年8月8日特大山洪泥石流灾害的基本特征及成因. 地质通报, 2010, 30(1): 141-150 (Liu Chuanzheng, Miao Tianbao, Chen Hongqi, et al. Basic feature and origin of the “8·8” mountain torrent-debris flow disaster happened in Zhouqu county, Gansu, China, Aug. 8. Geological Bulletin of China, 2010, 30(1): 141-150 (in Chinese)
|
[5] |
赵志明, 潘岳, 陈理. 四川茂县新磨村滑坡高速启动机理研究. 工程地质学报, 2020, 1-10
(Zhao Zhiming, Pan Yue, Chen Li. Study on the mechanism of initial departure with high-speed of Xinmo rockslide, Maoxian, Sichuan. Journal of Engineering Geology, 2020, 1-10 (in Chinese))
|
[6] |
张睿骁. 滑坡碎屑流对防护结构的冲击效应及堆积特征研究. [硕士论文]. 绵阳: 西南科技大学, 2020
(Zhang Ruixiao. Impact effect and accumulation characteristics of landslide interact with protective structure. [Master Thesis]. Mianyang: Southwest University of Science and Technology, 2020 (in Chinese))
|
[7] |
Domnik B, Pudasaini SP. Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations. Journal of Non-Newtonian Fluid Mechanics, 2012, 173: 72-86
|
[8] |
Domnik B, Pudasaini, SP, Katzenbach R, et al. Coupling of full two-dimensional and depth-averaged models for granular flows. Journal of Non-Newtonian Fluid Mechanics, 2013, 201: 56-68 doi: 10.1016/j.jnnfm.2013.07.005
|
[9] |
Faug T. Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines. Physical Review E, 2015, 92(6): 062310 doi: 10.1103/PhysRevE.92.062310
|
[10] |
Kattel P, Kafle J, Fischer JT, et al. Interaction of two-phase debris flow with obstacles. Engineering Geology, 2018, 242: 197-217 doi: 10.1016/j.enggeo.2018.05.023
|
[11] |
Pudasaini SP, Hutter K, Hsiau SS, et al. Rapid flow of dry granular materials down inclined chutes impinging on rigid walls. Physics of Fluids, 2007, 19(5): 053302 doi: 10.1063/1.2726885
|
[12] |
Pudasaini SP, Kroner C. Shock waves in rapid flows of dense granular materials: theoretical predictions and experimental results. Physical Review E, 2008, 78(4): 041308 doi: 10.1103/PhysRevE.78.041308
|
[13] |
Teufelsbauer H, Wang Y, Pudasaini SP, et al. DEM simulation of impact force exerted by granular flow on rigid structures. Acta Geotechnica, 2011, 6(3): 119-133 doi: 10.1007/s11440-011-0140-9
|
[14] |
Zhou GGD, Du JH, Song DR, et al. Numerical study of granular debris flow run-up against slit dams by discrete element method. Landslides, 2020, 17(3): 585-595 doi: 10.1007/s10346-019-01287-4
|
[15] |
Bi Y, Du Y, He S, et al. Numerical analysis of effect of baffle configuration on impact force exerted from rock avalanches. Landslides, 2018, 15(5): 1029-1043 doi: 10.1007/s10346-018-0979-z
|
[16] |
孙新坡, 何思明, 樊晓一等. 崩塌体与拦石墙冲击动力演化过程及参数敏感性. 成都理工大学学报(自然科学版), 2017, 44(2): 232-238 (Sun Xinpo, He Siming, Fan Xiaoyi, et al. The impact dynamic evolution process and parameter sensitivity study on collapse and buttress. Journal of Chengdu University of Technology (Science &Technology Edition)
|
[17] |
Dai Z, Huang Y, Cheng H, et al. SPH model for fluid–structure interaction and its application to debris flow impact estimation. Landslides, 2017, 14(3): 917-928 doi: 10.1007/s10346-016-0777-4
|
[18] |
Gray JMNT, Tai YC, Noelle S. Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. Journal of Fluids Mechanics, 2003, 491: 161-181 doi: 10.1017/S0022112003005317
|
[19] |
Cui X, Gray JMNT. Gravity-driven granular free-surface flow around a circular cylinder. Journal of Fluids Mechanics, 2013, 720: 314-337 doi: 10.1017/jfm.2013.42
|
[20] |
Juez C, Caviedes-Voullième D, Murillo J, et al. 2D dry granular free-surface flow over complex topography with obstacles. Part II:Numerical predictions of fluid structures and benchmarking. Computers & Geosciences, 2014, 73: 142-163
|
[21] |
张睿骁, 樊晓一, 杨海龙等. 不同拦挡距离对滑坡碎屑流冲击效应影响的离散元模拟. 西南科技大学学报, 2018, 33(3): 37-42 (Zhang Ruixiao, Fan Xiaoyi, Yang Hailong, et al. Discrete element simulation of the effects of different baffle distances on the impact of landslide-debris flow. Journal of Southwest University of Science and Technology, 2018, 33(3): 37-42 (in Chinese) doi: 10.3969/j.issn.1671-8755.2018.03.008
|
[22] |
张睿骁, 樊晓一, 姜元俊. 滑坡碎屑流冲击拦挡结构的离散元模拟. 水文地质工程地质, 2019, 46(1): 148-155 (Zhang Ruixiao, Fan Xiaoyi, Jiang Yuanjun. Discrete element simulation of the impact of landslide debris flow on resistive structures. Hydrogeology &Engineering Geology, 2019, 46(1): 148-155 (in Chinese)
|
[23] |
张睿骁, 樊晓一, 姜元俊等. 不同拦挡结构对滑坡-碎屑流冲击和堆积特征的影响. 自然灾害学报, 2019, 28(4): 52-60 (Zhang Ruixiao, Fan Xiaoyi, Jiang Yuanjun, et al. The different retaining structures influenced on landslide-debris flow impact and accumulation characteristics. Journal of Natural Disasters, 2019, 28(4): 52-60 (in Chinese)
|
[24] |
Fei JB, Jie YX, Hong CY, et al. Modelling of avalanche-obstacle interaction using the depth-averaged continuum approach. Granular Matter, 2020, 22(2): 31 doi: 10.1007/s10035-020-0995-2
|
[25] |
Wang Y, Hutter K, Pudasaini SP. The Savage-Hutter theory: A system of partial differential equations for avalanche flows of snow, debris, and mud, Zeitschrift fur Angewandte Mathematik und Mechanik, 2004, 84(8): 507-527
|
[26] |
Savage SB, Hutter K. The motion of a finite mass of granular material down a rough incline, Journal of Fluids Mechanics, 1989, 199: 177-215
|
[27] |
Pudasaini SP, Hutter K. Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches. Berlin: Springer, 2007
|
[28] |
Kurganov A, Petrova G. A second-order well-balanced positivity preserving central-upwind scheme for the saint-venant system. Communications in Mathematical Sciences, 2007, 5(1): 133-160 doi: 10.4310/CMS.2007.v5.n1.a6
|
[29] |
Wang XL, Li JC. A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study. Science China – Physics Mechanics & Astronomy, 2017, 60(12): 124712
|
[30] |
黄灿, 刘青泉, 王晓亮. 梯级溃坝洪水洪峰增强机制. 力学学报, 2020, 52(3): 645-655 (Huang Can, Liu Qingquan, Wang Xiaoliang. Mechanism of peak discharge enhancement of cascade dam break floods. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 645-655 (in Chinese)
|
[31] |
Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Berlin: Springer, 2009
|
[32] |
Caviedes-Voullième D, Juez C, Murillo J, et al. 2D dry granular free-surface flow over complex topography with obstacles Part I: Experimental study using a consumer-grade RGB-D sensor. Computers & Geosciences, 2014, 73: 177-197
|
[33] |
Wang XL, Liu QQ. Modeling shallow geological flows on steep terrains using a specific differential transformation. Acta Mechanica, 2021, 232: 2379-2394 doi: 10.1007/s00707-021-02944-3
|
[34] |
Johannesson T, Gauer P, Issler D et al. The Design of Avalanche Protection Dams. Luxembourg: European Commission, 2009
|
[35] |
Iverson RM, Ouyang CJ. Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory. Reviews of Geophysics, 2015, 53(1): 27-58 doi: 10.1002/2013RG000447
|
[1] | Wang Xiaoming, Tian Xingxing, Zhang Zhen, Xiao Heng. EXPLICITLY MODELING THE MULLINS EFFECT OF RUBBER-LIKE MATERIAL WITH RATE DEPENDENCY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3553-3563. DOI: 10.6052/0459-1879-24-254 |
[2] | Yu Tongxi, Tian Lanren, Zhu Ling. DIRECT PREDICTION OF MAXIMUM DEFLECTION FOR PLASTICALLY DEFORMED STRUCTURES UNDER INTENSE DYNAMIC PULSE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1113-1123. DOI: 10.6052/0459-1879-22-607 |
[3] | Zheng Xiaogang, Zhu Chengxiang, You Yancheng. DESIGN OF MULTISTAGE COMPRESSION WAVERIDER BASED ON THE LOCAL-TURNING OSCULATING CONES METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 601-611. DOI: 10.6052/0459-1879-21-357 |
[4] | Wang Xiaoming, Wu Rongxing, Jiang Yi, Xiao Heng. EXPLICITLY MODELING PERMANENT SET AND ANISOTROPY PROPERTY INDUCED BY STRESS SOFTENING FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1999-2009. DOI: 10.6052/0459-1879-21-060 |
[5] | Wang Yirui, Li Mingtao, Zhou Binghong. IMPULSIVE TRAJECTORY OPTIMIZATION OF KINETIC IMPACTOR MISSIONS FOR ASTEROID DEFLECTION BASED ON AN APPROXIMATION DEFLECTION MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 912-928. DOI: 10.6052/0459-1879-20-210 |
[6] | Gao Zhiqiang, Fu Weiping, Wang Wen, Kang Weichao, Wu Jiebei, Liu Yanpeng. THE CONTACT ENERGY DISSIPATION OF THE LATERAL AND INTERACTIONAL BETWEEN THE ELASTIC-PLASTIC ASPERITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 858-869. DOI: 10.6052/0459-1879-17-103 |
[7] | Fu Yunwei, Zhang Long, Ni Xinhuay, Liu Xiequan, Yu Jinfeng, Chen Cheng. INTERFACE CRACKING ANALYSIS WITH INCLUSIONS INTERACTION IN COMPOSITE CERAMIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 154-162. DOI: 10.6052/0459-1879-14-399 |
[8] | Zuowu Li. Study on the dissipative effect of approximate riemann solver on hypersonic heatflux simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 19-25. DOI: 10.6052/0459-1879-2008-1-2006-359 |
[9] | THE TRANSVERSE DEFLECTION ANALYSIS OF UNSYMMETRICAL COMPOSITE LAMINATED PLATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(6): 686-691. DOI: 10.6052/0459-1879-1997-6-1995-285 |
[10] | A NUMERICEL SIMULATION OF ENERGY DISSIPATION IN PRESSURE CONDUITS WITH TWO PERFORATED PLATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(6): 641-646. DOI: 10.6052/0459-1879-1995-6-1995-479 |
1. |
彭慧,池辉,徐聪,尹招琴,包福兵,凃程旭. 温度对撞击器内颗粒沉积粒径影响的研究. 力学学报. 2024(01): 79-93 .
![]() | |
2. |
蔡翼,黄骏. 线性化改进物质点法的颗粒流仿真. 复旦学报(自然科学版). 2024(02): 216-229 .
![]() | |
3. |
陈福振 ,李亚雄 ,史腾达 ,严红 . 三维圆柱型颗粒堆坍塌问题的全相态数值模拟. 力学学报. 2022(06): 1572-1589 .
![]() |