EI、Scopus 收录
中文核心期刊
Yang Su, Zhang Huiqin, Yu Wangxin, Cheng Pengda, Liu Qingquan, Wang Xiaoliang. Numerical study of interaction between granular flow and an array of obstacles by a bed-fitted depth-averaged model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3399-3412. DOI: 10.6052/0459-1879-21-200
Citation: Yang Su, Zhang Huiqin, Yu Wangxin, Cheng Pengda, Liu Qingquan, Wang Xiaoliang. Numerical study of interaction between granular flow and an array of obstacles by a bed-fitted depth-averaged model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3399-3412. DOI: 10.6052/0459-1879-21-200

NUMERICAL STUDY OF INTERACTION BETWEEN GRANULAR FLOW AND AN ARRAY OF OBSTACLES BY A BED-FITTED DEPTH-AVERAGED MODEL

  • Received Date: May 10, 2021
  • Accepted Date: October 18, 2021
  • Available Online: October 19, 2021
  • The impact of granular flow such as debris flow and landslide, and how to design obstacles to deflect granular hazard, are becoming more and more important recently. In this study a bed-fitted depth-averaged model is established to simulate the interaction between granular flow and obstacles on steep terrains, which is able to simulate the birth and evolution of shock wave, reflection, bypass and runup during interaction between granular flow and obstacles on steep terrains. A series of numerical simulations concerning granular flows interacting with an array of tetrahedral obstacles of different distributions were conducted. A new dimensionless index called deflection efficiency was proposed, and the effects of tetrahedral obstacle arrays on the flow distance and lateral spreading characteristics of granular flow were quantitatively evaluated. A single tetrahedral obstacle plays a role of dissipation and deflection on granular flow, the latter of which even more obviously changes the granular flow pattern. An array of tetrahedral obstacles shows a comprehensive action of dissipation and deflection on granular flow, where multilevel actions dissipate energy in granular flow through bow shocks, and the splitting and changing actions on the flow path deflect granular flow. The obstacle system could control the final deposit to produce a protection region downstream.
  • [1]
    夏添. 震区泥石流危害性评价及预警减灾系统研究. [博士论文]. 成都: 成都理工大学, 2013

    (Xia Tian. Hazard assessment of debris flow in earthquakeregion and system design for warning and mitigation. [PhD Thesis]. Chengdu: Chengdu University of Technology, 2013 (in Chinese))
    [2]
    Tang C, Rengers N, van Asch ThWJ, et al. Triggering conditions and depositional characteristics of a disastrous debris flow event in Zhouqu city, Gansu province, northwestern China. Natural Hazards and Earth System Sciences, 2011, 11(11): 2903-2912 doi: 10.5194/nhess-11-2903-2011
    [3]
    Pudasaini SP, Mergili M. A multi-phase mass flow model. Journal of Geophysical Research-Earth Surface, 2019, 124(12): 2920-2942 doi: 10.1029/2019JF005204
    [4]
    刘传正, 苗天宝, 陈红旗等. 甘肃舟曲2010年8月8日特大山洪泥石流灾害的基本特征及成因. 地质通报, 2010, 30(1): 141-150 (Liu Chuanzheng, Miao Tianbao, Chen Hongqi, et al. Basic feature and origin of the “8·8” mountain torrent-debris flow disaster happened in Zhouqu county, Gansu, China, Aug. 8. Geological Bulletin of China, 2010, 30(1): 141-150 (in Chinese)
    [5]
    赵志明, 潘岳, 陈理. 四川茂县新磨村滑坡高速启动机理研究. 工程地质学报, 2020, 1-10

    (Zhao Zhiming, Pan Yue, Chen Li. Study on the mechanism of initial departure with high-speed of Xinmo rockslide, Maoxian, Sichuan. Journal of Engineering Geology, 2020, 1-10 (in Chinese))
    [6]
    张睿骁. 滑坡碎屑流对防护结构的冲击效应及堆积特征研究. [硕士论文]. 绵阳: 西南科技大学, 2020

    (Zhang Ruixiao. Impact effect and accumulation characteristics of landslide interact with protective structure. [Master Thesis]. Mianyang: Southwest University of Science and Technology, 2020 (in Chinese))
    [7]
    Domnik B, Pudasaini SP. Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations. Journal of Non-Newtonian Fluid Mechanics, 2012, 173: 72-86
    [8]
    Domnik B, Pudasaini, SP, Katzenbach R, et al. Coupling of full two-dimensional and depth-averaged models for granular flows. Journal of Non-Newtonian Fluid Mechanics, 2013, 201: 56-68 doi: 10.1016/j.jnnfm.2013.07.005
    [9]
    Faug T. Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines. Physical Review E, 2015, 92(6): 062310 doi: 10.1103/PhysRevE.92.062310
    [10]
    Kattel P, Kafle J, Fischer JT, et al. Interaction of two-phase debris flow with obstacles. Engineering Geology, 2018, 242: 197-217 doi: 10.1016/j.enggeo.2018.05.023
    [11]
    Pudasaini SP, Hutter K, Hsiau SS, et al. Rapid flow of dry granular materials down inclined chutes impinging on rigid walls. Physics of Fluids, 2007, 19(5): 053302 doi: 10.1063/1.2726885
    [12]
    Pudasaini SP, Kroner C. Shock waves in rapid flows of dense granular materials: theoretical predictions and experimental results. Physical Review E, 2008, 78(4): 041308 doi: 10.1103/PhysRevE.78.041308
    [13]
    Teufelsbauer H, Wang Y, Pudasaini SP, et al. DEM simulation of impact force exerted by granular flow on rigid structures. Acta Geotechnica, 2011, 6(3): 119-133 doi: 10.1007/s11440-011-0140-9
    [14]
    Zhou GGD, Du JH, Song DR, et al. Numerical study of granular debris flow run-up against slit dams by discrete element method. Landslides, 2020, 17(3): 585-595 doi: 10.1007/s10346-019-01287-4
    [15]
    Bi Y, Du Y, He S, et al. Numerical analysis of effect of baffle configuration on impact force exerted from rock avalanches. Landslides, 2018, 15(5): 1029-1043 doi: 10.1007/s10346-018-0979-z
    [16]
    孙新坡, 何思明, 樊晓一等. 崩塌体与拦石墙冲击动力演化过程及参数敏感性. 成都理工大学学报(自然科学版), 2017, 44(2): 232-238 (Sun Xinpo, He Siming, Fan Xiaoyi, et al. The impact dynamic evolution process and parameter sensitivity study on collapse and buttress. Journal of Chengdu University of Technology (Science &Technology Edition), 2017, 44(2): 232-238 (in Chinese)
    [17]
    Dai Z, Huang Y, Cheng H, et al. SPH model for fluid–structure interaction and its application to debris flow impact estimation. Landslides, 2017, 14(3): 917-928 doi: 10.1007/s10346-016-0777-4
    [18]
    Gray JMNT, Tai YC, Noelle S. Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. Journal of Fluids Mechanics, 2003, 491: 161-181 doi: 10.1017/S0022112003005317
    [19]
    Cui X, Gray JMNT. Gravity-driven granular free-surface flow around a circular cylinder. Journal of Fluids Mechanics, 2013, 720: 314-337 doi: 10.1017/jfm.2013.42
    [20]
    Juez C, Caviedes-Voullième D, Murillo J, et al. 2D dry granular free-surface flow over complex topography with obstacles. Part II:Numerical predictions of fluid structures and benchmarking. Computers & Geosciences, 2014, 73: 142-163
    [21]
    张睿骁, 樊晓一, 杨海龙等. 不同拦挡距离对滑坡碎屑流冲击效应影响的离散元模拟. 西南科技大学学报, 2018, 33(3): 37-42 (Zhang Ruixiao, Fan Xiaoyi, Yang Hailong, et al. Discrete element simulation of the effects of different baffle distances on the impact of landslide-debris flow. Journal of Southwest University of Science and Technology, 2018, 33(3): 37-42 (in Chinese) doi: 10.3969/j.issn.1671-8755.2018.03.008
    [22]
    张睿骁, 樊晓一, 姜元俊. 滑坡碎屑流冲击拦挡结构的离散元模拟. 水文地质工程地质, 2019, 46(1): 148-155 (Zhang Ruixiao, Fan Xiaoyi, Jiang Yuanjun. Discrete element simulation of the impact of landslide debris flow on resistive structures. Hydrogeology &Engineering Geology, 2019, 46(1): 148-155 (in Chinese)
    [23]
    张睿骁, 樊晓一, 姜元俊等. 不同拦挡结构对滑坡-碎屑流冲击和堆积特征的影响. 自然灾害学报, 2019, 28(4): 52-60 (Zhang Ruixiao, Fan Xiaoyi, Jiang Yuanjun, et al. The different retaining structures influenced on landslide-debris flow impact and accumulation characteristics. Journal of Natural Disasters, 2019, 28(4): 52-60 (in Chinese)
    [24]
    Fei JB, Jie YX, Hong CY, et al. Modelling of avalanche-obstacle interaction using the depth-averaged continuum approach. Granular Matter, 2020, 22(2): 31 doi: 10.1007/s10035-020-0995-2
    [25]
    Wang Y, Hutter K, Pudasaini SP. The Savage-Hutter theory: A system of partial differential equations for avalanche flows of snow, debris, and mud, Zeitschrift fur Angewandte Mathematik und Mechanik, 2004, 84(8): 507-527
    [26]
    Savage SB, Hutter K. The motion of a finite mass of granular material down a rough incline, Journal of Fluids Mechanics, 1989, 199: 177-215
    [27]
    Pudasaini SP, Hutter K. Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches. Berlin: Springer, 2007
    [28]
    Kurganov A, Petrova G. A second-order well-balanced positivity preserving central-upwind scheme for the saint-venant system. Communications in Mathematical Sciences, 2007, 5(1): 133-160 doi: 10.4310/CMS.2007.v5.n1.a6
    [29]
    Wang XL, Li JC. A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study. Science China – Physics Mechanics & Astronomy, 2017, 60(12): 124712
    [30]
    黄灿, 刘青泉, 王晓亮. 梯级溃坝洪水洪峰增强机制. 力学学报, 2020, 52(3): 645-655 (Huang Can, Liu Qingquan, Wang Xiaoliang. Mechanism of peak discharge enhancement of cascade dam break floods. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 645-655 (in Chinese)
    [31]
    Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Berlin: Springer, 2009
    [32]
    Caviedes-Voullième D, Juez C, Murillo J, et al. 2D dry granular free-surface flow over complex topography with obstacles Part I: Experimental study using a consumer-grade RGB-D sensor. Computers & Geosciences, 2014, 73: 177-197
    [33]
    Wang XL, Liu QQ. Modeling shallow geological flows on steep terrains using a specific differential transformation. Acta Mechanica, 2021, 232: 2379-2394 doi: 10.1007/s00707-021-02944-3
    [34]
    Johannesson T, Gauer P, Issler D et al. The Design of Avalanche Protection Dams. Luxembourg: European Commission, 2009
    [35]
    Iverson RM, Ouyang CJ. Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory. Reviews of Geophysics, 2015, 53(1): 27-58 doi: 10.1002/2013RG000447
  • Related Articles

    [1]Wang Xiaoming, Tian Xingxing, Zhang Zhen, Xiao Heng. EXPLICITLY MODELING THE MULLINS EFFECT OF RUBBER-LIKE MATERIAL WITH RATE DEPENDENCY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3553-3563. DOI: 10.6052/0459-1879-24-254
    [2]Yu Tongxi, Tian Lanren, Zhu Ling. DIRECT PREDICTION OF MAXIMUM DEFLECTION FOR PLASTICALLY DEFORMED STRUCTURES UNDER INTENSE DYNAMIC PULSE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1113-1123. DOI: 10.6052/0459-1879-22-607
    [3]Zheng Xiaogang, Zhu Chengxiang, You Yancheng. DESIGN OF MULTISTAGE COMPRESSION WAVERIDER BASED ON THE LOCAL-TURNING OSCULATING CONES METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 601-611. DOI: 10.6052/0459-1879-21-357
    [4]Wang Xiaoming, Wu Rongxing, Jiang Yi, Xiao Heng. EXPLICITLY MODELING PERMANENT SET AND ANISOTROPY PROPERTY INDUCED BY STRESS SOFTENING FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1999-2009. DOI: 10.6052/0459-1879-21-060
    [5]Wang Yirui, Li Mingtao, Zhou Binghong. IMPULSIVE TRAJECTORY OPTIMIZATION OF KINETIC IMPACTOR MISSIONS FOR ASTEROID DEFLECTION BASED ON AN APPROXIMATION DEFLECTION MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 912-928. DOI: 10.6052/0459-1879-20-210
    [6]Gao Zhiqiang, Fu Weiping, Wang Wen, Kang Weichao, Wu Jiebei, Liu Yanpeng. THE CONTACT ENERGY DISSIPATION OF THE LATERAL AND INTERACTIONAL BETWEEN THE ELASTIC-PLASTIC ASPERITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 858-869. DOI: 10.6052/0459-1879-17-103
    [7]Fu Yunwei, Zhang Long, Ni Xinhuay, Liu Xiequan, Yu Jinfeng, Chen Cheng. INTERFACE CRACKING ANALYSIS WITH INCLUSIONS INTERACTION IN COMPOSITE CERAMIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 154-162. DOI: 10.6052/0459-1879-14-399
    [8]Zuowu Li. Study on the dissipative effect of approximate riemann solver on hypersonic heatflux simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 19-25. DOI: 10.6052/0459-1879-2008-1-2006-359
    [9]THE TRANSVERSE DEFLECTION ANALYSIS OF UNSYMMETRICAL COMPOSITE LAMINATED PLATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(6): 686-691. DOI: 10.6052/0459-1879-1997-6-1995-285
    [10]A NUMERICEL SIMULATION OF ENERGY DISSIPATION IN PRESSURE CONDUITS WITH TWO PERFORATED PLATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(6): 641-646. DOI: 10.6052/0459-1879-1995-6-1995-479
  • Cited by

    Periodical cited type(3)

    1. 彭慧,池辉,徐聪,尹招琴,包福兵,凃程旭. 温度对撞击器内颗粒沉积粒径影响的研究. 力学学报. 2024(01): 79-93 . 本站查看
    2. 蔡翼,黄骏. 线性化改进物质点法的颗粒流仿真. 复旦学报(自然科学版). 2024(02): 216-229 .
    3. 陈福振 ,李亚雄 ,史腾达 ,严红 . 三维圆柱型颗粒堆坍塌问题的全相态数值模拟. 力学学报. 2022(06): 1572-1589 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (714) PDF downloads (71) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return