Citation: | Ji Yi, Xing Yufeng. An unconditionally stable method for transient heat conduction. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1951-1961. DOI: 10.6052/0459-1879-21-140 |
[1] |
Bathe KJ. Finite Element Procedures. Upper Saddle River: Prentice Hall, 1996.
|
[2] |
Fung TC. Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 1: First-order equations. International Journal for Numerical Methods in Engineering, 1999, 45: 941-970 doi: 10.1002/(SICI)1097-0207(19990720)45:8<941::AID-NME612>3.0.CO;2-S
|
[3] |
Fung TC. Higher-order accurate least-squares methods for first-order initial value problems. International Journal for Numerical Methods in Engineering, 1999, 45: 77-99 doi: 10.1002/(SICI)1097-0207(19990510)45:1<77::AID-NME579>3.0.CO;2-5
|
[4] |
Fung TC. Solving initial value problems by differential quadrature method–Part 1: First-order equations. International Journal for Numerical Methods in Engineering, 2001, 50: 1411-1427 doi: 10.1002/1097-0207(20010228)50:6<1411::AID-NME78>3.0.CO;2-O
|
[5] |
Kim W, Reddy JN. A new family of higher-order time integration algorithms for the analysis of structural dynamics. Journal of Applied Mechanics-Transactions of the ASME, 2007, 84(7): 071008
|
[6] |
Kim W, Reddy JN. Effective higher-order time integration algorithms for the analysis of linear structural dynamics. Journal of Applied Mechanics-Transactions of the ASME, 2007, 84(7): 071009
|
[7] |
Zhong WX, Williams FW. A precise time step integration method. Part C: Journal of Mechanical Engineering Science, 1994, 208(6): 427-430 doi: 10.1243/PIME_PROC_1994_208_148_02
|
[8] |
Wu F, Gao Q, Zhong WX. Fast precise integration method for hyperbolic heat conduction problems. Applied Mathematics and Mechanics (English Edition)
|
[9] |
Li QH, Chen SS, Kou GX. Transient heat conduction analysis using the MLPG method and modified precise time step integration method. Journal of Computational Physics, 2011, 230: 2736-2750 doi: 10.1016/j.jcp.2011.01.019
|
[10] |
张文志, 富明慧, 蓝林华. 两端边值问题的通用精细积分法. 中山大学学报(自然科学版), 2010, 49(6): 15-19 (Zhang Wenzhi, Fu Minghui, Lan Linhua. General precise integration method for two-point value problems. Acta Scientiarum Baturalium Universitatis Sunyatseni, 2010, 49(6): 15-19 (in Chinese)
|
[11] |
彭海军, 高强. 线性非齐次常微分方程两端边值问题精细积分法. 大连理工大学学报, 2010, 50(4): 475-480 (Peng Haijun, Gao Qiang. Precise integration method for two-point boundary value problems of linear nonhomogeneous ordinary differential equations. Journal of Dalian University of Technology, 2010, 50(4): 475-480 (in Chinese) doi: 10.7511/dllgxb201004002
|
[12] |
谭述君, 钟万勰. 非齐次动力方程Duhamel项的精细积分. 力学学报, 2007, 39(3): 374-381 (Tan Shujun, Zhong Wanxie. Precise integration method for Duhamel terms arising from non-homogenous dynamic systems. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 374-381 (in Chinese) doi: 10.3321/j.issn:0459-1879.2007.03.011
|
[13] |
汪梦甫, 周锡元. 结构动力学方程的更本文精细积分方法. 力学学报, 2004, 36(2): 191-195 (Wang Mengfu, Zhou Xiyuan. Renewal precise time step integration method of structural dynamic analysis. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2): 191-195 (in Chinese) doi: 10.3321/j.issn:0459-1879.2004.02.009
|
[14] |
Kennedy CA, Carpenter MH. Diagonally implicit Runge-Kutta methods for stiff ODEs. Applied Numerical Mathematics, 2019, 146: 221-244 doi: 10.1016/j.apnum.2019.07.008
|
[15] |
Boom PD, Zingg DW. Optimization of high-order diagonally-implicit Runge–Kutta methods. Journal of Computational Physics, 2018, 1(15): 168-191
|
[16] |
Issa S, Wallin M, Ristinmaa M, et al. Diagonally implicit Runge–Kutta (DIRK) integration applied to finite strain crystal plasticity modeling. Computational Mechanics, 2018, 62: 1429-1441 doi: 10.1007/s00466-018-1572-y
|
[17] |
Dong S. BDF-like methods for nonlinear dynamic analysis. Journal of Computational Physics, 2010, 229(8): 3019-3045 doi: 10.1016/j.jcp.2009.12.028
|
[18] |
Gear CW. Numerical Initial Value Problems in Ordinary Differential Equations. New Jersey: Prentice Hall; 1971.
|
[19] |
Zhang HM, Zhang RS, Masarati P. Improved second-order unconditionally stable schemes of linear multi-step and equivalent single-step integration methods. Computational Mechanics, 2021, 67: 289-313 doi: 10.1007/s00466-020-01933-y
|
[20] |
Zhang J. A-stable two-step time integration methods with controllable numerical dissipation for structural dynamics. International Journal for Numerical Methods in Engineering, 2020, 121: 54-92 doi: 10.1002/nme.6188
|
[21] |
Zhang J. A-stable linear two-step time integration methods with consistent starting and their equivalent single-step methods in structural dynamics analysis. International Journal for Numerical Methods in Engineering, 2021, 122: 2312-2359 doi: 10.1002/nme.6623
|
[22] |
Malakiyeh MM, Shojaee S, Bathe KJ. The Bathe time integration method revisited for prescribing desired numerical dissipation. Computers & Structures, 2019, 212: 289-298
|
[23] |
Noh G, Bathe KJ. The Bathe time integration method with controllable spectral radius: the ρ∞-Bathe method. Computers & Structures, 2019, 212: 299-310
|
[24] |
Li JZ, Li XY, Yu KP. Enhanced studies on the composite sub-step algorithm for structural dynamics: the Bathe-like algorithm. Applied Mathematics Modelling, 2020, 80: 33-64 doi: 10.1016/j.apm.2019.11.033
|
[25] |
Wen WB, Deng SY, Wang NB, et al. An improved sub-step time-marching procedure for linear and nonlinear dynamics with high-order accuracy and high-efficient energy conservation. Applied Mathematics Modelling, 2021, 90: 78-100 doi: 10.1016/j.apm.2020.08.068
|
[26] |
Ji Y, Xing YF. An optimized three-sub-step composite time integration method with controllable numerical dissipation. Computers & Structures, 2020, 231: 106210
|
[27] |
Li JZ, Yu KP, He HN. A second-order accurate three sub-step composite algorithm for structural dynamics. Applied Mathematics Modelling, 2020, 77: 1391-1412 doi: 10.1016/j.apm.2019.08.022
|
[28] |
Xing YF, Ji Y, Zhang HM. On the construction of a type of composite time integration methods. Computers & Structures, 2019, 221: 157
|
[29] |
朱强华, 杨恺, 梁钰等. 基于特征正交分解的一类瞬态非线性热传导问题的新型快速分析方法. 力学学报, 2020, 52(1): 124-138 (Zhu Qianghua, Yang Kai, Liang Yu, et al. A novel fast algorithm based on model order reduction for one class of transient nonlinear heat conduction problem. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 124-138 (in Chinese) doi: 10.6052/0459-1879-19-323
|
[30] |
李艾伦, 傅卓佳, 李柏伟等. 含肿瘤皮肤组织传热分析的广义有限差分方法. 力学学报, 2018, 50(2): 1198-1205 (Li Ailun, Fu Zhuojia, Li Bowei, et al. Generalized finite difference method for bioheat transfer analysis on skin tissue with tumors. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 1198-1205 (in Chinese)
|
[31] |
刘硕, 方国东, 王兵等. 近场动力学与有限元方法耦合求解热传导问题. 力学学报, 2018, 50(2): 339-348 (Liu Shuo, Fang Guodong, Wang Bing, et al. Study of thermal conduction problem using coupled peridynamics and finite element method. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 339-348 (in Chinese) doi: 10.6052/0459-1879-17-332
|
[32] |
Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. New Jersey: Prentice Hall, 1987.
|
[33] |
Hughes TJR. Unconditionally stable algorithms for nonlinear heat conduction. Computer Methods in Applied Mechanics and Engineering, 1977, 10: 135-139 doi: 10.1016/0045-7825(77)90001-9
|
[34] |
Wang YZ, Maxam D, Tamma KK, et al. Design/analysis of GEGS4-1 time integration framework with improved stability and solution accuracy for first-order transient systems. Journal of Computational Physics, 2020, 422: 109763 doi: 10.1016/j.jcp.2020.109763
|
[35] |
Wang BL, Tian ZH. Application of finite element-finite difference method to the determination of transient temperature field in functionally graded material. Finite Elements in Analysis and Design, 2005, 41: 335-349 doi: 10.1016/j.finel.2004.07.001
|
[36] |
Chen BS, Gu YX, Guan ZQ, et al. Nonlinear transient heat conduction analysis with precise time integration method. Numerical Heat Transfer Part B-Fundamentals, 2001, 40: 325-341 doi: 10.1080/104077901317091712
|
[1] | Chen Haolong, Tang Xinyue, Wang Runhua, Zhou Huanlin, Liu Zhanli. SOLVING MULTI-MEDIA NONLINEAR TRANSIENT HEAT CONDUCTION PROBLEM BASED ON PHYSICS-INFORMED NEURAL NETWORKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 89-102. DOI: 10.6052/0459-1879-24-337 |
[2] | Zhu Qianghua, Yang Kai, Liang Yu, Gao Xiaowei. A NOVEL FAST ALGORITHM BASED ON MODEL ORDER REDUCTION FOR ONE CLASS OF TRANSIENT NONLINEAR HEAT CONDUCTION PROBLEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 124-138. DOI: 10.6052/0459-1879-19-323 |
[3] | Liu Shuo, Fang Guodong, Wang Bing, Fu Maoqing, Liang Jun. STUDY OF THERMAL CONDUCTION PROBLEM USING COUPLED PERIDYNAMICS AND FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 339-348. DOI: 10.6052/0459-1879-17-332 |
[4] | Long Kai, Wang Xuan, Han Dan. STRUCTURAL LIGHT DESIGN FOR STEADY HEAT CONDUCTION USING MULTI-MATERIAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 359-366. DOI: 10.6052/0459-1879-16-262 |
[5] | Chen Wenjiong, Liu Shutian, Zhang Yongcun. OPTIMIZATION DESIGN OF CONDUCTIVE PATHWAYS FOR COOLING A HEAT GENERATING BODY WITH HIGH CONDUCTIVE INSERTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 406-412. DOI: 10.6052/0459-1879-15-270 |
[6] | Zhu Haitao, Shan Peng. DIRECT NUMERICAL SIMULATION OF TURBINE CASCADE FLOW WITH HEAT TRANSFER EFFECTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 672-680. DOI: 10.6052/0459-1879-12-356 |
[7] | Weiqi Qian. Inverse estimation of heat source term in three-dimensional transient heat conduction problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5): 611-618. DOI: 10.6052/0459-1879-2008-5-2007-256 |
[8] | Rongjun Cheng, Yumin Cheng. The meshless method for a two-dimensional inverse heat conduction problem with a source parameter[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 843-847. DOI: 10.6052/0459-1879-2007-6-2007-074 |
[9] | Qiwen Xue, Haitian Yang. A regularized solution for the inverse two-order transient heat conduction problems with multi-variables[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 774-780. DOI: 10.6052/0459-1879-2007-6-2007-062 |
[10] | Jun Zhou, Youhe Zhou. A new simple method of implicit time integration for dynamic problems of engineering structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 91-99. DOI: 10.6052/0459-1879-2007-1-2006-167 |
1. |
黄志杰,韦相福. 一种自动驾驶汽车四轮转向过程稳定控制方法. 机械设计与制造. 2025(04): 60-65+71 .
![]() | |
2. |
王骏骋,王法慧. 基于变权重PSO-Elman神经网络的路面附着系数估计. 浙江大学学报(工学版). 2024(03): 622-634 .
![]() | |
3. |
陶亮,唐钰,李元强,张大山,张小龙. 多胎内传感器智能轮胎开发平台设计与侧偏试验研究. 机械工程学报. 2024(08): 245-255 .
![]() | |
4. |
金辉,鲁坤. 基于多参数自适应优化的智能车轨迹跟踪. 中国公路学报. 2023(05): 260-272 .
![]() | |
5. |
汪洪波,王春阳,高含,徐世寒. 基于FFUKF路面附着系数估计的汽车牵引力控制. 力学学报. 2022(07): 1866-1879 .
![]() | |
6. |
叶文伟,陈林聪,孙建桥. 泊松白噪声激励下强非线性系统的半解析瞬态解. 力学学报. 2022(12): 3468-3476 .
![]() |