EI、Scopus 收录
中文核心期刊
Volume 53 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Zhang Wenjing, Niu Jiangchuan, Shen Yongjun, Wen Shaofang. Combined control of vehicle suspension with fractional-order magnetorheological fluid damper model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2037-2046 doi: 10.6052/0459-1879-21-137
Citation: Zhang Wenjing, Niu Jiangchuan, Shen Yongjun, Wen Shaofang. Combined control of vehicle suspension with fractional-order magnetorheological fluid damper model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2037-2046 doi: 10.6052/0459-1879-21-137

COMBINED CONTROL OF VEHICLE SUSPENSION WITH FRACTIONAL-ORDER MAGNETORHEOLOGICAL FLUID DAMPER MODEL

doi: 10.6052/0459-1879-21-137
  • Received Date: 2021-04-06
  • Accepted Date: 2021-07-05
  • Available Online: 2021-07-06
  • Publish Date: 2021-07-18
  • The fractional-order Bingham model of magnetorheological fluid damper has simple structure and can better describe the hysteretic characteristics of the system. The vibration control of a nonlinear vehicle suspension system with magnetorheological fluid damper under harmonic excitation is studied, where the single-degree-of-freedom 1/4 vehicle suspension system with fractional-order Bingham model of magnetorheological fluid damper is considered. The primary resonance response of suspension system with fractional-order Bingham model under sky-hook damping semi-active control is analyzed, and the approximate analytical solution is obtained by means of averaging method. The amplitude-frequency response equation of the steady-state solution of the suspension system is obtained, and the stability condition of the suspension system is also obtained according to Lyapunov’s stability theory. By comparing the amplitude-frequency response curves of the numerical solution and approximate analytical solution, the accuracy of the approximate analytical solution has been verified. The influence of semi-active control on the ride comfort of the vehicle is illustrated by the root mean square values of acceleration of the sprung mass in the vertical direction, it is found that the semi-active control strategy of sky-hook damping can not improve the ride comfort of vehicle in low frequency excitation region of road. Therefore, a combined control strategy of passive control and semi-active control is proposed, and the influence of semi-active control parameter on the vibration control effect is analyzed. The results show that the combined control strategy can not only improve the ride comfort of the vehicle, but also effectively suppress the primary resonance vibration amplitude of suspension system.

     

  • loading
  • [1]
    Prabakar RS, Sujatha C, Narayanan S. Response of a quarter car model with optimal magnetorheological damper parameters. Journal of Sound and Vibration, 2013, 332: 2191-2206 doi: 10.1016/j.jsv.2012.08.021
    [2]
    Du HP, Li WH, Zhang N. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator. Smart Materials and Structures, 2011, 20(10): 105003 doi: 10.1088/0964-1726/20/10/105003
    [3]
    李惠, 刘敏, 欧进萍等. 斜拉索磁流变智能阻尼控制系统分析与设计. 中国公路学报, 2005, 18(4): 37-41 (Li Hui, Liu Min, Ou Jinpin, et al. Analysis and design of magnetorheological intelligent damping control system for stay cables. China Journal of Highway and Transport, 2005, 18(4): 37-41 (in Chinese) doi: 10.3321/j.issn:1001-7372.2005.04.008
    [4]
    Dyke SJ, Spencer Jr BF, Sain MK, et al. Modeling and control of magnetorheological dampers for seiamic response reduction. Smart Materials and Structures, 1996, 5(5): 565-575 doi: 10.1088/0964-1726/5/5/006
    [5]
    Xiao ZR, Zhang ZW, Quansah A. Combined Identification of Parameters in the Mechanical Model of Magnetorheological Damper. Journal of Civil Engineering Research, 2019, 9(1): 16-24
    [6]
    Hu GL, Liu QJ, Li G, et al. Simulation and analysis of adjustable Sigmoid model for a typical magnetorheological damper. Machine Tool and Hydraulics Hydromechatronics Engineering, 2016, 44(24): 9-15
    [7]
    Ambhore N, Hivarale S, Pangavhane D. A study of Bouc-Wen model of magnetorheological fluid damper for vibration control. Interational Journal of Eeginerring Research and Technology, 2013, 2(2): 1-6
    [8]
    刘晓梅, 李洪友, 黄宜坚. 磁流变阻尼器的分数阶Bingham模型研究. 机电工程, 2015, 32(3): 338-342 (Liu Xiaomei, Li Hongyou, Huang Yijian. Fractional derivative Bingham model of MR damper. Journal of Mechanical &Electrical Engineering, 2015, 32(3): 338-342 (in Chinese)
    [9]
    Liu XM, Huang YJ, Li HY, et al. Analysis of fractional derivative model for MR damping system. Applied Mechanics and Materials Vols, 2010, 29(32): 2102-2107
    [10]
    Sharma S. Vibration control in quarter-car model with magnetorheological (MR) dampers using Bingham model. Journal of Applied Mechanical Engineering, 2018, 7(1): 1000299
    [11]
    Tudon-Martinez JC, Hernandez-Alcantara D, Amezquita-Brooks L, et al. Magneto-rheological dampers—model inflfluence on the semi-active suspension performance. Smart Materials and Structures, 2019, 28: 105030 doi: 10.1088/1361-665X/ab39f2
    [12]
    Prabakar RS, Sujatha C, Narayana S. Response of a half-car model with optimal magnetorheological damper parameters. Journal of Vibration and Control, 2014, 5(8): 1-15
    [13]
    李礼夫, 宋俊. 基于预瞄技术的汽车磁流变半主动悬架控制方法. 功能材料, 2006, 5(37): 796-798 (Li Lifu, Song Jun. Study on control method for semi active suspension vehicle via magneto rheological fluid damper based on preview. Journal of Functional Materials, 2006, 5(37): 796-798 (in Chinese)
    [14]
    Yang SP, Shen YJ. Recent advances in dynamics and control of hysteretic nonlinear systems. Chaos Solitons Fractals, 2009, 40(4): 1808-1822 doi: 10.1016/j.chaos.2007.09.064
    [15]
    Podlubny I. Fractional Differential Equations: Mathematics in Science and Engineering. New York: Academic Press, 1999.
    [16]
    申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析. 物理学报, 2012, 61(11): 1-6 (Shen Yongjun, Yang Shaopu, Xing Haijun. Dynamic analysis of linear single degree-of-freedom oscillator with fractional-order derivative. Actamic Physica Sinica, 2012, 61(11): 1-6 (in Chinese)
    [17]
    Chen LC, Li ZS, Zhuang QQ, et al. First-passage failure of single-degree of-freedom nonlinear oscillators with fractional derivative. Journal of Vibration and Control, 2012, 19(14): 2154-2163
    [18]
    Chen YQ, Vinagre BM, Podlubny I. Continued fraction expansion approaches to discretizing fractional order derivatives-an expository review. Nonlinear Dynamics, 2004, 38: 155-170 doi: 10.1007/s11071-004-3752-x
    [19]
    Xu Y, Gu RC, Zhang HQ, et al. Chaos in diffusionless lorenz system with a fractional order and its control. International Journal of Bifurcation and Chaos, 2012, 22(4): 1-8
    [20]
    Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul, 2011, 16(3): 1140-1153 doi: 10.1016/j.cnsns.2010.05.027
    [21]
    Momani S. A numerical scheme for the solution of multiorder fractional differential equations. Applied Mathematics and Computation, 2006, 182: 761-770 doi: 10.1016/j.amc.2006.04.037
    [22]
    Shokooh A, Suarez L. A comparison of numerical methods applied to a fractional model of damping materials. Journal of Vibration and Control, 1999, 5(3): 331-354 doi: 10.1177/107754639900500301
    [23]
    Craiem D, Majin RL. Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics. Physical Biology, 2010, 7: 013001 doi: 10.1088/1478-3975/7/1/013001
    [24]
    Vyawahare VA, Nataraj P. Fractional-order modeling of neutron transport in a nuclear reactor. Applied Mathematical Modelling, 2013, 37(23): 9747-9767 doi: 10.1016/j.apm.2013.05.023
    [25]
    Jia Z, Liu C. Fractional-order modeling and simulation of magnetic coupled boost converter in continuous conduction mode. International Journal of Bifurcation & Chaos, 2018, 28(05): 1850061
    [26]
    陈明, 贾来兵, 尹协振. 描述鱼鳍材料松弛特性的分数Zener模型. 力学学报, 2011, 43(1): 217-220 (Chen Ming, Jia Laibing, Yin Xiezhen. Relaxation modulus of caual fin studied by fractional Zener model. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 217-220 (in Chinese) doi: 10.6052/0459-1879-2011-1-lxxb2010-145
    [27]
    蔡伟, 陈文. 复杂介质中任意阶频率依赖耗散声波的分数阶导数模型. 力学学报, 2016, 48(6): 1265-1280 (Cai Wei, Chen Wen. Fractional derivative modeling of frequency-dependent dissipative mdechanism for wave propagation in complex media. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1265-1280 (in Chinese) doi: 10.6052/0459-1879-16-186
    [28]
    陈丙三, 刘成武, 江吉彬等. 基于分数阶的磁流变液黏弹性研究. 机械科学与技术, 2013, 32(9): 1378-1384 (Chen Bingsan, Liu Chengwu, Jiang Jibin, et al. Analyzing magnetorheological fluid's viscoelasticity using fractional order calculus. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(9): 1378-1384 (in Chinese)
    [29]
    Schiessel H, Metzler R, Blumen A, Nonnenmacher TF. Generalized viscoelastic models: their fractional equations with solutions. Journal of Physics A: Mathematical and General, 1995, 28(23): 6567-6584 doi: 10.1088/0305-4470/28/23/012
    [30]
    Heymans N, Bauwens JC. Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologica Acta, 1994, 33: 210-219 doi: 10.1007/BF00437306
    [31]
    Niu JC, Hou J, Shen YJ, et al. Dynamic analysis and vibration control of nonlinear boring bar with fractional-order model of magnetorheological fluid. International Journal of Non-Linear Mechanics, 2020, 121: 103459 doi: 10.1016/j.ijnonlinmec.2020.103459
    [32]
    赵和平, 黄宏成, 习纲等. 非线性弹簧汽车悬架动态特性研究. 机械强度, 2001, 23(2): 165-167 (Zhao Heping, Huang Hongcheng, Xi Gang, et al. Dynmic characteristics of vehicle suspension with non-linear spring. Journal of Mechanical Strength, 2001, 23(2): 165-167 (in Chinese) doi: 10.3321/j.issn:1001-9669.2001.02.012
    [33]
    李军, 李学鋆. 汽车悬架螺旋弹簧的设计与仿真分析. 华侨大学学报(自然科学版), 2017, 38(6): 753-759

    Li Jun, Li Xueyun. Design and simulation analysis of nonlinear coil spring for automobile suspension. Journal of Huaqiao University (Natural Science), 2017, 38(6): 753-759 (in Chinese)
    [34]
    张勇. 半主动座椅悬架非线性控制研究. [硕士论文]. 长春: 吉林大学, 2019

    (Zhang Yong. Research on nonlinear control of semi-active seat suspension. [Master Thesis]. Changchun: Jilin University, 2019 (in Chinese))
    [35]
    Petras I. Fractional-Order Nonlinear Systems Modeling, Analysis and Simulation. Beijing: Higher Education Press, 2011.
    [36]
    李韶华, 杨绍普. 采用改进 Bingham模型的非线性汽车悬架的主共振. 振动与冲击, 2006, 25(4): 109-128 (Li Shaohua, Yang Shaopu. Primary resonance of a nonlinear vehicle suspension system using a modified Bingham model. Journal of Vibration and Shock, 2006, 25(4): 109-128 (in Chinese) doi: 10.3969/j.issn.1000-3835.2006.04.029
    [37]
    Pang H, Zhang X, Yang JJ, et al. Adaptive backstepping-based control design for uncertain nonlinear active suspension system with input delay. Int J Robust Nonlinear, 2019: 1-20 doi: 10.1002/rnc.4695
    [38]
    Li SH, Yang SP, Guo WW. Investigation on chaotic motion in hysteretic non-linear suspension system with multi-frequency excitations. Mechanics Research Communications, 2004, 31: 229-236 doi: 10.1016/j.mechrescom.2003.10.002
    [39]
    杨万福. 汽车理论. [硕士论文]. 广州: 华南理工大学出版社, 2010

    (Yang Wanfu. Automotive theory. [Master Thesis]. Guangzhou: South China University of Technology Press, 2010 (in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (338) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return