Citation: | Li Yixiang, Wang Qiu, Luo Kai, Li Jinping, Zhao Wei. Theoretical analysis on hypersonic MHD shock stand-off distance of blunt body. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2493-2500 doi: 10.6052/0459-1879-21-127 |
[1] |
丁明松, 江涛, 刘庆宗等. 电导率模拟对高超声速MHD控制影响. 航空学报, 2019, 40(11): 123009 (Ding Mingsong, Jiang Tao, Liu Qingzong, et al. Influence of conductivity simulation on hypersonic MHD control. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 123009 (in Chinese)
|
[2] |
李益文, 张百灵, 李应红等. 磁流体动力学在航空工程中的应用与展望. 力学进展, 2017, 47(1): 452-502 (Li Yiwen, Zhang Bailing, Li Yinghong, et al. Application and prospect of magnetohydrodynamics in aeronautical engineering. Advances in Mechanics, 2017, 47(1): 452-502 (in Chinese)
|
[3] |
李开. 高温真实气体条件下的磁控热防护机理研究. [博士论文]. 长沙: 国防科学技术大学, 2017
(Li Kai. Mechanism analysis of magnetohydrodynamic heat shield system including high temperature real gas effect. [PhD Thesis]. Changsha: National University of Defense Technology, 2017 (in Chinese))
|
[4] |
罗凯, 汪球, 李逸翔等. 基于高温气体效应的磁流体流动控制研究进展. 力学学报, 2021, 53(6): 1515-1531 (Luo Kai, Wang Qiu, Li Yixiang, et al. Research progress on magnetohydrodynamic flow control under test conditions with high temperature real gas effect. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1515-1531 (in Chinese) doi: 10.6052/0459-1879-21-067
|
[5] |
Ziemer RW. Experimental investigation in magneto-aerodynamics. ARS Journal, 1959, 29(9): 642-647 doi: 10.2514/8.4856
|
[6] |
Schramm JM, Hannemann K. Study of MHD effects in the high-enthalpy shock tunnel Göttingen (HEG) using a 30T-pulsed magnet system//31st International Symposium on Shock Waves, Nagoya, Japan, 2017
|
[7] |
Gildfind DE, Smith D, Lewis SW, et al. Expansion tube magneto- hydrodynamic experiments with argon test gas. AIAA Paper 2018-3754, 2018
|
[8] |
Seemann GR, Cambel AB. Observations concerning magnetoaero- dynamic drag and shock standoff distance. Proceedings of the National Academy of Sciences of the United States of America, 1966, 55(3): 457-465 doi: 10.1073/pnas.55.3.457
|
[9] |
Chang CF, Kranc SC, Nowak RJ, et al. Theoretical and experimental studies of magneto-aerodynamic drag and shock standoff distance. NASA-CR-70315, 1966
|
[10] |
Kawamura M, Matsuda A, Katsurayama H, et al. Experiment on drag enhancement for a blunt body with electrodynamic heat shield. Journal of Spacecraft and Rockets, 2009, 46(6): 1171-1177 doi: 10.2514/1.44230
|
[11] |
Smith DR, Gildfind DE, James CM, et al. Magnetohydrodynamic drag force measurements in an expansion tube. AIAA Paper 2018-3755, 2018
|
[12] |
Smith DR, Gildfind DE, Jacobs PA, et al. Magnetohydrodynamic drag measurements in an expansion tunnel with argon test gas. AIAA Journal, 2020, 58(10): 4495-4504 doi: 10.2514/1.J059540
|
[13] |
Gülhan A, Esser B, Koch U, et al. Experimental verification of heat-flux mitigation by electromagnetic fields in partially -ionized-argon flows. Journal of Spacecraft and Rockets, 2009, 46(2): 274-283 doi: 10.2514/1.39256
|
[14] |
Brio M, Wu CC. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. Journal of Computational Physics, 1988, 75(2): 400-422 doi: 10.1016/0021-9991(88)90120-9
|
[15] |
Augustinus J, Harada S, Agarwal RK, et al. Numerical solutions of the eight-wave structure ideal MHD equations by modified Runge-Kutta scheme with TVD. AIAA Paper 1997-2398, 1997
|
[16] |
Harada S, Augustinus J, Hoffmann K, et al. Development of a modified Runge-Kutta scheme with TVD limiters for the ideal 1-D MHD equations. AIAA Paper 1997-2090, 1997
|
[17] |
Damevin HM, Hoffmann K. Numerical magnetogasdynamics simulations of hypersonic, chemically reacting flows. AIAA Paper 2001-2746, 2001
|
[18] |
Zha G, Shen Y, Wang B. An improved low diffusion E-CUSP upwind scheme. Computers & Fluids, 2011, 48(1): 214-220
|
[19] |
田正雨. 高超声速流动的磁流体力学控制数值模拟研究. [博士论文]. 长沙: 国防科学技术大学, 2008
(Tian Zhengyu. Numerical investigation for hypersonic control by magnetohydrodynamics method. [PhD Thesis]. Changsha: National University of Defense Technology, 2008 (in Chinese))
|
[20] |
Bush WB. Magnetohydrodynamic-hypersonic flow past a blunt body. Journal of the Aerospace Sciences, 1958, 25(11): 685-690 doi: 10.2514/8.7845
|
[21] |
Smith MC, Wu CS. Magnetohydrodynamic hypersonic viscous flow past a blunt body. AIAA Journal, 1964, 2(5): 963-965 doi: 10.2514/3.2465
|
[22] |
Porter RW, Cambel AB. Hall effect in flight magnetogasdynamics. AIAA Journal, 1967, 5(12): 2208-2213 doi: 10.2514/3.4410
|
[23] |
Ludford GSS, Murray JD. On the flow of a conducting fluid past a magnetized sphere. Journal of Fluid Mechanics, 1960, 7(4): 516-528 doi: 10.1017/S0022112060000268
|
[24] |
Meyer RX. Magnetohydrodynamic-hypersonic flow in the quasi-Newtonian approximation. Reviews of Modern Physics, 1960, 32(4): 1004-1007 doi: 10.1103/RevModPhys.32.1004
|
[25] |
Lykoudis PS. The Newtonian approximation in magnetic hypersonic stagnation-point flow. Journal of the Aerospace Sciences, 1961, 28(7): 541-546 doi: 10.2514/8.9073
|
[26] |
Ericson WB, Maciulaitis A. Investigation of magnetohydrodynamic flight control. Journal of Spacecraft and Rockets, 1964, 1(3): 283-289 doi: 10.2514/3.27637
|
[27] |
Hooks LE, Lewis RC. Simplified magnetoaerodynamic flow relations for axisymmetric blunt bodies. AIAA Journal, 1967, 5(4): 644-650 doi: 10.2514/3.4042
|
[28] |
Kemp NH. On hypersonic stagnation-point flow with a magnetic field. Journal of the Aeronautical Sciences, 1958, 25(6): 405-407
|
[29] |
Porter RW, Cambel AB. Magnetic coupling in flight magneto- aerodynamics. AIAA Journal, 1967, 5(4): 803-805 doi: 10.2514/3.4071
|
[30] |
Olivier H. A theoretical model for the shock stand-off distance in frozen and equilibrium flows. Journal of Fluid Mechanics, 2000, 413: 345-353 doi: 10.1017/S0022112000008703
|
[31] |
Lefevre A, Gildfind DE, Gollan RJ, et al. Expansion tube experiments of magnetohydrodynamic aerobraking for superorbital earth reentry. AIAA Journal, 2021, in press.
|