Citation:  Peng Aoping, Li Zhihui, Wu Junlin, Pi Xingcai, Jiang Xinyu. Construcrion and analysis of a new computable model for Boltzmann equation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 25822594 doi: 10.6052/0459187921104 
[1] 
Schouler M, Prevereaud Y, Mieussens L. Survey of flight and numerical data of hypersonic rarefied flows encountered in earth orbit and atmospheric reentry. Progress in Aerospace Sciences, 2020, 118: 100638 doi: 10.1016/j.paerosci.2020.100638

[2] 
Xu SS, Wu ZN, Li Q, et al. Hybrid continuum /DSMC computation of rocket mode lightcraft flow in near space with high temperature and rarefaction effect. Computers and Fluids, 2009, 38: 13941404 doi: 10.1016/j.compfluid.2008.01.024

[3] 
周恒, 张涵信. 空气动力学的新问题. 中国科学: 物理学 力学 天文学, 2015(45): 104709 (Zhou Heng, Zhang Hanxin. New problems of aerodynamics. Scientia Sinica:Physica,Mechanica &Astronomica, 2015(45): 104709 (in Chinese)

[4] 
方方, 田园, 赵攀等. 空间返回航天器气动外形设计与需求分析. 空气动力学学报, 2018, 36(5): 816825 (Fang Fang, Tian Yuan, Zhao Pan, et al. Aerodynamics shape designs and requirement analysis of reentry spacecraft. Acta Aerodynamics Sinica, 2018, 36(5): 816825 (in Chinese) doi: 10.7638/kqdlxxb2017.0027

[5] 
Struchtrup H. Macroscopic Transport Equations for Rarefied Gas Flows. Berlin: Springer, 2005

[6] 
Cercignani C. Rarefied Gas Dynamics: from Basic Concepts to Actual Calculations. Cambridge: Cambridge University Press, 2000

[7] 
沈青. 稀薄气体动力学. 北京: 国防工业出版社, 2003
(Shen Qing. Rarefied Gas Dynamics. Beijing: National Defense Industry Press, 2003 (in Chinese))

[8] 
Bhatnagar PL, Gross EP, Krook M. A model collision processes in gases: I. Small amplitude processes is charged and neutral onecomponent system. Physical Review, 1954, 94(3): 511525 doi: 10.1103/PhysRev.94.511

[9] 
Vincenti WG, Kruger CH. Introduction to Physical Gas Dynamics. New York: Wiley, 1965

[10] 
Holway LH. New statistical models for kinetic theory: methods of construction. Physics of Fluids, 1966, 9(9): 16581673 doi: 10.1063/1.1761920

[11] 
Brull S, Schneider J. On the ellipsoidal statistical model for polyatomic gases. Continuum Mechanics and Thermodynamics, 2009, 20: 489508 doi: 10.1007/s0016100900953

[12] 
Shakhov EM. Generalization of the Krook kinetic relaxation equation. Fluid Dynamics, 1968, 3(5): 9596

[13] 
Shakhov EM. Kinetic model equations and numerical results//14th International Symposium on Rarefied Gas Dynamics, Tokyo, 1984: 137148

[14] 
Liu GJ. A method for constructing a model form for the Boltzmann equation. Physics of Fluids A, 1990, 2(2): 277280 doi: 10.1063/1.857777

[15] 
Belyi VV. Derivation of model kinetic equation. Europhysics Letters, 2015, 111: 40011 doi: 10.1209/02955075/111/40011

[16] 
Zheng YS, Struchtrup H. Ellipsoidal statistical BGK model with velocitydependent collision frequency. Physics of Fluids, 2015, 17: 127103

[17] 
Christos T, Gian PG, Dimitris V, et al. Effect of vibrational degrees of freedom on the heat transfer in polyatomic gases confined between parallel plates. International Journal of Heat and Mass Transfer, 2016, 102: 162173 doi: 10.1016/j.ijheatmasstransfer.2016.06.010

[18] 
Brull S, Schneider J. A new approach for the ellipsoidal statistical model. Continuum Mechanics and Thermodynamics, 2008, 20: 6374 doi: 10.1007/s001610080068y

[19] 
Belyi VV. On the model kinetic description of plasma and a Boltzmann gas of hard spheres. Journal of Statistical Mechanics: Theory and Experiment, 2009, 6: 06001

[20] 
Li ZH, Fang M, Jiang XY, et al. Convergence proof of the DSMC method and the gas kinetic unified algorithm for the Boltzmann equation. Science China, Physics, Mechanics & Astronomy, 2013, 56(2): 404417

[21] 
Frolova A, Titarev V. Recent progress on supercomputer modelling of highspeed rarefied gas flows using kinetic equations. Supercomputing Frontiers and Innovations, 2018, 5(3): 117121

[22] 
Titarev V. Application of model kinetic equations to hypersonic rarefied gas flows. Computers and Fluids, 2018, 169: 6270 doi: 10.1016/j.compfluid.2017.06.019

[23] 
Titarev V, Frolova AA, Rykov VA. Comparison of the Shakhov kinetic equation and DSMC method as applied to space vehicle aerothermodynamics. Journal of Computational and Applied Mathematics, 2020, 364: 112354 doi: 10.1016/j.cam.2019.112354

[24] 
Li ZH, Zhang HX. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum. Journal of Computational Physics, 2004, 193: 708738 doi: 10.1016/j.jcp.2003.08.022

[25] 
Li ZH, Peng AP, Zhang HX, et al. Rarefied gas flow simulations using highorder gas kinetic unified algorithms for Boltzmann model equations. Progress in Aerospace Sciences, 2015, 74: 81113 doi: 10.1016/j.paerosci.2014.12.002

[26] 
Peng AP, Li ZH, Wu JL, et al. Implicit gas kinetic unified algorithm based on multiblock docking grid for multibody reentry flows covering all flow regimes. Journal of Computational Physics, 2016, 327: 919942 doi: 10.1016/j.jcp.2016.09.050

[27] 
Li ZH, Hu WQ, Peng AP, et al. Gas kinetic unified algorithm for plane external forcedriven flows covering all flow regimes by modeling of Boltzmann equation. International Journal for Numerical Methods in Fluids, 2020, 92: 922949 doi: 10.1002/fld.4812

[28] 
李志辉, 蒋新宇, 吴俊林等. 转动非平衡玻尔兹曼模型方程统一算法与全流域绕流计算应用. 力学学报, 2014, 46(3): 336351 (Li Zhihui, Jiang Xinyu, Wu Junlin, et al. Gas kinetic unified algorithm for Boltzmann model equation in rotational nonequilibrium and its application to the whole range flow regimes. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 336351 (in Chinese) doi: 10.6052/0459187913246

[29] 
彭傲平, 李志辉, 吴俊林等. 基于多块对接网格的隐式气体运动论统一算法应用研究. 力学学报, 2016, 48(1): 95101 (Peng Aoping, Li Zhihui, Wu Junlin, et al. An application of implicit gas kinetic unified algorithm based on multi block patched grid. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 95101 (in Chinese) doi: 10.6052/0459187914279

[30] 
彭傲平, 李志辉, 吴俊林等. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析. 物理学报, 2017, 66(20): 204703 (Peng Aoping, Li Zhihui, Wu Junlin, et al. Validation and analysis of gas kinetic unified algorithm for solving Boltzmann model equation with vibrational energy excitation. Acta Physica Sinica, 2017, 66(20): 204703 (in Chinese) doi: 10.7498/aps.66.204703

[31] 
李志辉, 梁杰, 李中华等. 跨流域空气动力学模拟方法与返回舱再入气动研究. 空气动力学学报, 2018, 36(5): 826847 (Li Zhihui, Liang Jie, Li Zhonghua, et al. Simulation methods of aerodynamics covering various flow regimes and applications to aerodynamic characteristics of reentry spacecraft module. Acta Aerodynamics Sinica, 2018, 36(5): 826847 (in Chinese) doi: 10.7638/kqdlxxb2018.0121

[32] 
Xu K, Huang JC. A unified gas kinetic scheme for continuum and rarefied flows. Journal of Computational Physics, 2010, 229: 77477764 doi: 10.1016/j.jcp.2010.06.032

[33] 
Chen SZ, Xu K, Lee CB, et al. A unified gas kinetic scheme with moving mesh and velocity space adaptation. Journal of Computational Physics, 2012, 231: 66436664 doi: 10.1016/j.jcp.2012.05.019

[34] 
Huang JC, Xu K, Yu PB. A unified gas kinetic scheme for continuum and rarefied flows II: multidimensional cases. Communications in Computational Physics, 2012, 12(3): 662690 doi: 10.4208/cicp.030511.220911a

[35] 
Huang JC, Xu K, Yu P. A unified gas kinetic scheme for continuum and rarefied flows III: microflow simulations. Communications in Computational Physics, 2013, 14(5): 11471173 doi: 10.4208/cicp.190912.080213a

[36] 
Liu C, Xu K, Sun QH, et al. A unified gas kinetic scheme for continuum and rarefied flows IV: full Boltzmann and model equations. Journal of Computational Physics, 2016, 314: 305340 doi: 10.1016/j.jcp.2016.03.014

[37] 
Wang Z, Yan H, Li QB, et al. Unified gas kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes. Journal of Computational Physics, 2017, 350: 237259 doi: 10.1016/j.jcp.2017.08.045

[38] 
Baranger C, Claudel J, Hérouard N, et al. Locally refined discrete velocity grids for stationary rarefied flow simulations. Journal of Computational Physics, 2014, 257: 572593 doi: 10.1016/j.jcp.2013.10.014

[39] 
Chapman S, Cowling TG. The Mathematical Theory of Nonuniform Gases. Cambridge: Cambridge University Press, 1970

[40] 
Kudryavtsev AN, Shershnev AA. A numerical method for simulation of microflows by solving directly kinetic equations with WENO schemes. Journal of Scientific Computing, 2013, 57: 4273 doi: 10.1007/s109150139694z

[41] 
Bird GA. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Claredon Press, 1994

[42] 
Bird GA. The DSMC Method. Create Space Independent Publishing Platform, 2013
