EI、Scopus 收录
中文核心期刊
Hou Xiuhui, Lü You, Zhou Shiqi, Zhu Zhiwei, Zhang Kai, Deng Zichen. Mechanical properties analysis of a new energy absorbing structure with negative stiffness. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1940-1950. DOI: 10.6052/0459-1879-21-083
Citation: Hou Xiuhui, Lü You, Zhou Shiqi, Zhu Zhiwei, Zhang Kai, Deng Zichen. Mechanical properties analysis of a new energy absorbing structure with negative stiffness. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1940-1950. DOI: 10.6052/0459-1879-21-083

MECHANICAL PROPERTIES ANALYSIS OF A NEW ENERGY ABSORBING STRUCTURE WITH NEGATIVE STIFFNESS

  • Received Date: February 28, 2021
  • Accepted Date: May 23, 2021
  • Available Online: May 24, 2021
  • As a kind of mechanical metamaterial with wide application prospect, negative stiffness structures show significant advantages in energy absorption, vibration attentuation, and noise reduction . However, their engineering applications are severely limited attributed to the low specific energy absorption efficiency and non-autonomous spring-back of negative stiffness structures with the speciality of multi-stability. In order to solve this problem, by means of cell configuration design, a new kind of three-dimensional negative stiffness structure with the characteristic of autonomous spring-back is proposed in this paper. For this negative stiffness cells in series, the self rebound of curved beams during the loading and unloading process is used to realize the cyclic loading and multiple reuse of the structure.The multi-stability is restrained by adding a groove of certain depth. The buckling mode is selected via the adjustment of side wall thickness. The difference between critical loads of negative stiffness is thus enlarged, accordingly, the energy absorption efficiency is significantly improved. Then in order to achieve high energy absorption under complex load environments, the gradient design of structure size is carried out, and a gradient negative stiffness structure is proposed. The energy absorption efficiency of gradient negative stiffness structure and uniform negative stiffness structure under different load cinditons is compared by finite element simulations. Analytical and numerical results reveal that for the newly developed negative stiffness structure, not only the feature of autonomous spring-back is achieved, but also the energy absorption ability is improved. Moreover, different critical load maximums for negative stiffness are obtained for the gradient structure due to different microstructure sizes, which makes it to exhibit better energy absorption efficiency on the basis of realizing autonomous spring-back under various impact load environments. The new energy-absorption structure proposed in this paper provides technical support for engineering applications such as vibration attenuation and structure reorganization.
  • [1]
    Frenzel T, Findeisen C, Kadic M, et al. Tailored buckling microlattices as reusable light-weight shock absorbers. Advanced Materials, 2016, 28(28): 5865-5870 doi: 10.1002/adma.201600610
    [2]
    周云, 松本達治, 田中和宏等. 新型高阻尼黏弹性阻尼器性能试验研究. 工程力学, 2016, 33(7): 92-115 (Zhou Yun, Tataji Matsumoto, Kazuhiro Tanaka, et al. Experimental study on the performance of a new high damping viscoelastic damper. Engineering Mechanics, 2016, 33(7): 92-115 (in Chinese)
    [3]
    黄志诚, 秦朝烨, 褚福磊等. 附加黏弹阻尼层的薄壁构件振动问题研究综述. 振动与冲击, 2014, 33(7): 105-113 (Huang Zhicheng, Qin Chaoye, Chu Fulei, et al. Review on vibration problems of thin-walled members with viscoelastic damping layer. Journal of Vibration and Shock, 2014, 33(7): 105-113 (in Chinese)
    [4]
    邓磊, 王安稳, 毛柳伟等. 方孔蜂窝夹层板在爆炸载荷下的吸能特性. 振动与冲击, 2012, 31(12): 186-189 (Deng Lei, Wang Anwen, Mao Liuwei, et al. Energy absorption characteristics of honeycomb sandwich plate with square hole under explosion load. Journal of Vibration and Shock, 2012, 31(12): 186-189 (in Chinese)
    [5]
    Meza LR, Das S, Greer JR. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Research, 2014, 345(6202): 1322-1326
    [6]
    丁圆圆, 郑志军, 王士龙等. 多孔材料吸能行为对相对密度和冲击速度的依赖性. 固体力学学报, 2018, 39(6): 578-586 (Ding Yuanyuan, Zheng Zhijun, Wang Shilong, et al. Energy absorption behavior of porous materials dependent on relative density and impact velocity. Chinese Journal of Solid Mechanics, 2018, 39(6): 578-586 (in Chinese)
    [7]
    任毅如, 蒋宏勇, 金其多等. 仿生负泊松比拉胀内凹蜂窝结构耐撞性. 航空学报, 2020, 41(23978): 1-11 (Ren Yiru, Jiang Hongyong, Jin Qiduo, et al. Crashworthiness of bionic negative poisson's bilateral inflatable honeycomb structure. Acta Aeronautica Sinica, 2020, 41(23978): 1-11 (in Chinese)
    [8]
    陆幸, 马永其, 冯伟等. 汽车保险杠低速碰撞的数值研究. 力学季刊, 2014, 35(2): 350-361 (Lu Xing, Ma Yongqi, Feng Wei, et al. Numerical study on low speed bumper impact. Chinese Quarterly of Mechanics, 2014, 35(2): 350-361 (in Chinese)
    [9]
    吴文旺, 肖登宝, 孟嘉旭等. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望. 力学学报, 2021, 53(3): 611-638 (Wu Wenwang, Xiao Dengbao, Meng Jiaxu, et al. Mechanical design, impact resistance performance of negative Poisson's ratio structure and its application and prospect in vehicle engineering. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638 (in Chinese) doi: 10.6052/0459-1879-20-333
    [10]
    任晨辉, 杨德庆. 二维负刚度负泊松比超材料及其力学性能. 哈尔滨工程大学学报, 2020, 41(8): 1129-1135 (Ren Chenhui, Yang Deqing. Mechanical properties of two-dimensional metamaterials with negative stiffness and negative Poisson's ratio. Journal of Harbin Engineering University, 2020, 41(8): 1129-1135 (in Chinese)
    [11]
    宋宏伟, 虞钢, 范子杰等. 多孔材料填充薄壁结构吸能的相互作用效应. 力学学报, 2005, 37(6): 697-703 (Song Hongwei, Yu Gang, Fan Zijie, et al. nteraction effects of energy absorption in thin-walled structures filled with porous materials. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 697-703 (in Chinese) doi: 10.3321/j.issn:0459-1879.2005.06.004
    [12]
    王卫荣, 张锐, 葛新方. 基于永磁体间的磁性负刚度的分析与优化. 应用力学学报, 2021, 38(1): 18-25 (Wang Weirong, Zhang Rui, Ge Xinfang. Analysis and optimization of magnetic negative stiffness between permanent magnets. Chinese Journal of Applied Mechanics, 2021, 38(1): 18-25 (in Chinese)
    [13]
    邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性. 力学学报, 2019, 51(4): 1110-1120 (Qiu Hai, Fang Hongbing, Xu Jian. Nonlinear dynamic characteristics of multisteady series origami structures. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110-1120 (in Chinese) doi: 10.6052/0459-1879-19-115
    [14]
    彭海波, 申永军, 杨绍普. 一种含负刚度元件的新型动力吸振器的参数优化. 力学学报, 2015, 47(2): 320-326 (Peng Haibo, Shen Yongjun, Yang Shaopu. Parameter optimization of a new dynamic vibration absorber with negative stiffness element. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 320-326 (in Chinese) doi: 10.6052/0459-1879-14-275
    [15]
    Tan XJ, Wang B, Chen S, et al. A novel cylindrical negative stiffness structure for shock isolation. Composite Structures, 2019, 214: 397-405 doi: 10.1016/j.compstruct.2019.02.030
    [16]
    Chen S, Wang B, Zhu SW, et al. A novel composite negative stiffness structure for recoverable trapping energy. Composites Part A: Applied Science and Manufacturing, 2020, 129(105697): 1-11
    [17]
    Qiu J, Lang JH, Slocum AH. A curved-beam bistable mechanism. Journal of Microelectromechanical Systems, 2004, 13(2): 137-146 doi: 10.1109/JMEMS.2004.825308
    [18]
    Restrepo D, Mankame ND, Zavattieri PD. Phase transforming cellular materials. Extreme Mechanics Letters, 2015, 4: 52-60 doi: 10.1016/j.eml.2015.08.001
    [19]
    Findeisen C, Hohe J, Kadic M, et al. Characteristics of mechanical metamaterials based on buckling elements. Journal of the Mechanics and Physics of Solids, 2017, 102: 151-164 doi: 10.1016/j.jmps.2017.02.011
    [20]
    Pan F, Li YL, Li ZY, et al. 3D pixel mechanical metamaterials. Advanced Materials, 2019, 31(1900548): 1-8
    [21]
    Tan XJ, Chen S, Wang B, et al. Design, fabrication, and characterization of multistable mechanical metamaterials for trapping energy. Extreme Mechanics Letters, 2019, 28: 8-21 doi: 10.1016/j.eml.2019.02.002
    [22]
    Shan SC, Kang SH, Raney JR, et al. Multistable architected materials for trapping elastic strain energy. Advanced Materials, 2015, 27(29): 4296-4301 doi: 10.1002/adma.201501708
    [23]
    Mattias V. An analytical analysis of a compressed bistable buckled beam. Sensors and Actuators A, 1998, 69: 212-216 doi: 10.1016/S0924-4247(98)00097-1
    [24]
    Tan XJ, Chen S, Zhu SW, et al. Reusable metamaterial via inelastic instability for energy absorption. International Journal of Mechanical Sciences, 2019, 155: 509-517 doi: 10.1016/j.ijmecsci.2019.02.011
    [25]
    Florijn B, Coulais C, Vanhecke M. Programmable mechanical metamaterials. Physical Review Letters, 2014, 113(17): 175503 doi: 10.1103/PhysRevLett.113.175503
    [26]
    Chen Q, Zhang XM, Zhu BL. Design of buckling-induced mechanical metamaterials for energy absorption using topology optimization. Structural and Multidisciplinary Optimization, 2018, 58(4): 1395-1410 doi: 10.1007/s00158-018-1970-y
    [27]
    Katia B. Harnessing instabilities to design tunable architected cellular materials. Annual Review of Materials Research, 2017, 47: 51-61 doi: 10.1146/annurev-matsci-070616-123908
    [28]
    Hou XH, Deng ZC, Zhou JX, et al. Symplectic analysis for elastic wave propagation in two-dimensional cellular structures. Acta Mechanica Sinica, 2010, 26: 711-720 doi: 10.1007/s10409-010-0373-0
    [29]
    Hou XH, Deng ZC, Zhou JX. Symplectic analysis for wave propagation in one-dimensional nonlinear periodic structures. Applied Mathematics and Mechanics, 2010, 31(11): 1371-1382 doi: 10.1007/s10483-010-1369-7
    [30]
    Haghpanah B, Salari-sharif L, Pourrajab P, et al. Multistable shape-reconfigurable architected materials. Advanced Materials, 2016, 28(36): 7915-7920 doi: 10.1002/adma.201601650
  • Related Articles

    [1]Jin Mingzhu, Hou Xiuhui, Zhao Wenhao, Deng Zichen. RESEARCH ON REUSABLE PROPERTIES OF MULTISTABLE METAMATERIAL OF HIERARCHICAL CURVED BEAMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3227-3242. DOI: 10.6052/0459-1879-24-191
    [2]Zhang Tianhui, Liu Zhifang, Lei Jianyin, Wang Zhihua, Li Shiqiang. PLASTIC DYNAMIC RESPONSE AND ENERGY DISSIPATION MECHANISM OF ALUMINUM FOAM SANDWICH CIRCULAR TUBE UNDER INTERNAL BLAST LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2344-2353. DOI: 10.6052/0459-1879-23-165
    [3]Fan Dongyu, Su Binhao, Peng Hui, Pei Xiaoyang, Zheng Zhijun, Zhang Jianxun, Qin Qinghua. RESEARCH ON DYNAMIC CRUSHING AND MECHANISM OF MITIGATION AND ENERGY ABSORPTION OF CELLULAR SACRIFICIAL LAYERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1630-1640. DOI: 10.6052/0459-1879-22-047
    [4]Shi Yao, Liu Zhenpeng, Pan Guang, Gao Xingfu. STRUCTURAL DESIGN AND LOAD REDUCTION PERFORMANCE ANALYSIS OF GRADIENT DENSITY HEAD CAP OF VEHICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 939-953. DOI: 10.6052/0459-1879-21-620
    [5]Wu Wenwang, Xiao Dengbao, Meng Jiaxu, Liu Kai, Niu Yinghao, Xue Rui, Zhang Peng, Ding Wenjie, Ye Xuan, Ling Xue, Bi Ying, Xia Yong. MECHANICAL DESIGN, IMPACT ENERGY ABSORPTION AND APPLICATIONS OF AUXETIC STRUCTURES IN AUTOMOBILE LIGHTWEIGHT ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638. DOI: 10.6052/0459-1879-20-333
    [6]Qiu Hai, Fang Hongbin, Xu Jian. NONLINEAR DYNAMICAL CHARACTERISTICS OF A MULTI-STABLE SERIES ORIGAMI STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110-1121. DOI: 10.6052/0459-1879-19-115
    [7]Zeqi Tong, Yang Liu, Shutian Liu. DESIGN OPTIMIZATION OF TOP-HAT BEAM FOR ENERGY ABSORPTION UNDER TRANSVERSE CRASH BASED ON VARIABLE GAUGE ROLLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 462-472. DOI: 10.6052/0459-1879-18-323
    [8]Guiping Zhao, Tianjian Lu. Dynamic response of cellular metallic sandwich plates under impact loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 194-206. DOI: 10.6052/0459-1879-2008-2-2007-129
    [9]Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086
    [10]Interaction effect in energy absorption of porous material filled thin-walled structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 697-703. DOI: 10.6052/0459-1879-2005-6-2004-255
  • Cited by

    Periodical cited type(9)

    1. 徐玉龙,楼春钢,潘殿坤,伍章明. 基于固支-简支屈曲梁的旋转驱动双稳态柔顺机构. 机械设计与研究. 2024(02): 105-112 .
    2. 程乾 ,尹剑飞 ,温激鸿 ,郁殿龙 . 功能梯度三周期极小曲面静动态力学特性. 力学学报. 2024(09): 2646-2658 . 本站查看
    3. 靳明珠,侯秀慧,赵文皓,邓子辰. 多层级曲梁多稳态超材料的可重用性研究. 力学学报. 2024(11): 3227-3242 . 本站查看
    4. 潘怡,王萌,周阳,李雪梅,孙蓓蓓. 新型负刚度超材料吸能结构的设计与优化. 振动与冲击. 2023(06): 180-187 .
    5. 张志远,赵彧,郭长月,崔冬,常玉坤. 侵彻引信抗高过载复合灌封方法. 探测与控制学报. 2023(04): 124-129 .
    6. 冯学凯,王宝珍,巫绪涛,王选,郭煜. 新型节圆正弦蜂窝面内压缩力学性能研究. 力学学报. 2023(09): 1910-1920 . 本站查看
    7. 何斌策,张君华,孙莹. 曲壁蜂窝夹层板的振动特性研究. 固体力学学报. 2022(03): 296-306 .
    8. 王凯,周加喜,蔡昌琦,徐道临,文桂林. 低频弹性波超材料的若干进展. 力学学报. 2022(10): 2678-2694 . 本站查看
    9. 薛潇,张君华,孙莹,权铁汉. 曲壁蜂窝夹层悬臂板的振动特性研究. 力学学报. 2022(11): 3169-3180 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (1655) PDF downloads (359) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return