EI、Scopus 收录
中文核心期刊
Wang Xiaoming, Wu Rongxing, Jiang Yi, Xiao Heng. Explicitly modeling permanent set and anisotropy property induced by stress softening for rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1999-2009. DOI: 10.6052/0459-1879-21-060
Citation: Wang Xiaoming, Wu Rongxing, Jiang Yi, Xiao Heng. Explicitly modeling permanent set and anisotropy property induced by stress softening for rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1999-2009. DOI: 10.6052/0459-1879-21-060

EXPLICITLY MODELING PERMANENT SET AND ANISOTROPY PROPERTY INDUCED BY STRESS SOFTENING FOR RUBBER-LIKE MATERIALS

  • Received Date: February 02, 2021
  • Accepted Date: June 07, 2021
  • Available Online: June 07, 2021
  • Stress softening, known as the Mullins effect, is observed in rubber-like materials after initial loading cycles. Experimental observations have shown that the Mullins effect leads to a permanent set and induces anisotropic properties. A multi-axial, compressible strain energy function based on the Hencky strain is proposed to account for the stress softening and simulate the permanent set and anisotropic properties by introducing two variables, separately characterizing the permanent set and anisotropic properties, which are dependent on dissipation. A comprehensive, explicit shape function is proposed by using the spherical coordinate system to make the model effective in arbitrary direction. The new model exhibits isotropic properties when it not yet induced stress softening, and becomes anisotropy when the Mullins effect occurs. The residual strain increases and reach a fixed value as the loading-unloading cycles proceeds, and the anisotropy becomes more obvious. The simulation results are shown good accord with the classical experimental data and successfully forecast the permanent set and anisotropic properties induced by stress softening.
  • [1]
    Mullins L. Softening of rubber by deformation. Rubber Chemistry and Technology, 1969, 42(1): 339-362 doi: 10.5254/1.3539210
    [2]
    Mullins L. Effect of stretching on the properties of rubber. Rubber Chemistry and Technology, 1948, 21(2): 281-300 doi: 10.5254/1.3546914
    [3]
    Mullins L. Permanent set in vulcanized rubber. Rubber Chemistry and Technology, 1949, 22(4): 1036-1044 doi: 10.5254/1.3543010
    [4]
    Bueche F. Molecular basis of the Mullins effect. Journal of Appli-ed Polymer Science, 1960, 4: 107-114 doi: 10.1002/app.1960.070041017
    [5]
    Bueche F. Mullins effect and rubber-filler interaction. Journal of Applied Polymer Science, 1961, 5: 271-281 doi: 10.1002/app.1961.070051504
    [6]
    Lee M, William M. Application of a new structural theory to pol-ymers. A. Uniaxial stress in crosslinked rubbers. Journal of the Mechanics and Physics of Solids, 1985, 45: 1805-1834
    [7]
    Harwood JAC, Mullins L, Payne AR. Stress softening in natural rubber vulcanizates. Part II. Stress softening effects in pure gum and filler load rubbers. Journal of Applied Polymer Science, 1965, 9: 3011-3021.
    [8]
    Govindjee S, Simo JC. A mirco-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullin-s’ effect. Journal of the Mechanics and Physics of Solids, 1991, 39(1): 87-112 doi: 10.1016/0022-5096(91)90032-J
    [9]
    Marckmann G, Verron E, Gornet L, et al. A theory of network alteration for the Mullins effect. Journal of the Mechanics and Physics of Solids, 2002, 50: 2011-2028 doi: 10.1016/S0022-5096(01)00136-3
    [10]
    Göktepe S, Miehee C. A micro-macro approach to rubber-like mat-erials. Part III: The micro-sphere model of anisotropic Mullins-typedamage. Journal of the Mechanics and Physics of Solids, 2005, 53: 2259-2283 doi: 10.1016/j.jmps.2005.04.010
    [11]
    Blanchard AF, Parkinson D. Breakage of carbon-rubber networks by applied stress. Rubber Chemistry and Technology, 1952, 44(4): 799-812
    [12]
    Arrude EM, Boyce MC. A three-dimensional constitutive model forthe large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412 doi: 10.1016/0022-5096(93)90013-6
    [13]
    Mullins L, Tobin, NR. Theoretical model for the elastic behavior of filler reinforced vulcanized rubbers. Rubber Chemistry and Technology, 1957, 30(2): 555-571 doi: 10.5254/1.3542705
    [14]
    Mullins L, Tobin NR. Stress softening rubber vulcanizates Part I. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber. Journal of Applied polymer Science, 1965, 9: 2993-3009 doi: 10.1002/app.1965.070090906
    [15]
    Klüppel M, Schramm J. An advanced micro-mechanical model of hyper-elasticity and stress softening of reinforced rubbers // Dorf-mann, Eds. Constitutive Models for Rubber. 1999, 211-218
    [16]
    Govindjee S. An evaluation of strain amplification concepts via Monte Carlo simulations of an ideal composite. Rubber Chemistry and Technology, 1997, 70: 25-37 doi: 10.5254/1.3538416
    [17]
    Bergström JS, Boyce MC. Mechanical behavior of particle filled elastomers. Rubber Chemistry and Technology, 1999, 72: 633-656 doi: 10.5254/1.3538823
    [18]
    Simo JC. On a fully three-dimensional finite-strain viscoelastic da-mage model: Formulation and computational aspects. Computer Methods in Applied Mechanics & Engineering, 1987, 60: 153-173
    [19]
    Miehe C. Discontinuous and continuous damage evolution in Ogde-n-type large-strain elastic materials. European Journal of Mechanics A/Solids, 1995, 14: 697-720
    [20]
    Miehe C, Keck J. Superimposed finite elastic-viscoelastic-plastoelas-tic stress response with damage in filled rubbery polymers. Experi-ments, modeling and algorithmic implementation. Journal of Mech-anics and Physicals of Solids, 2000, 48(2): 323-365 doi: 10.1016/S0022-5096(99)00017-4
    [21]
    Kaliske M, Nasdala L, Rothert H. On damage modeling for elasticand viscoelastic materials at large strain. Computer & Structures, 2001, 79: 2133-2141
    [22]
    Lin RC, Schomburg U. A finite elastic-viscoelastic-elastoplastic material low with damage: theoretical and numerical aspects. Com-puter Methods in Applied Mechanics & Engineering, 2003, 192: 1591-1627
    [23]
    Ogden RW, Roxburgh DG. A pseudo-elastic model for the Mullins effect in filled rubber. Proceedings of the Royal Society, 1999, 455: 2861-2878 doi: 10.1098/rspa.1999.0431
    [24]
    Li on, A. A constitutive model for carbon black filled rubber: Exp-erimental investigations and mathematical representation. Continuum Mechanics and Thermodynamics, 1996, 8(3): 153-169 doi: 10.1007/BF01181853
    [25]
    Li on, A. On the large deformation behaviour of reinforced rubber at different temperatures. Journal of the Mechanics and Physics of Solids, 1997, 45(11-12): 1805-1834 doi: 10.1016/S0022-5096(97)00028-8
    [26]
    Diani J, Brieu M, Vacherand JM. A damage directional constitutive model for Mullins effect with permanent set and induced anisotropy. European Journal of Mechanics A/Solids, 2006, 25: 483-496 doi: 10.1016/j.euromechsol.2005.09.011
    [27]
    Dorfmann A, Ogden RW. A constitutive model for the Mullins eff-ect with permanent set in particle-reinforced rubber. International Journal of Solids and Structures, 2004, 41: 1855-1878 doi: 10.1016/j.ijsolstr.2003.11.014
    [28]
    Pawelski H. Softening behavior of elastomeric media after loading in changing directions//Besdo D, Schuster RH, Ilheman J, Eds. Proceedings of the Second European Conference of the Constitutive Models for Rubber. Balkema, 1999, 27-34.
    [29]
    谈炳东, 许进升, 孙朝翔, 等. 短纤维增强三元乙丙橡胶横观各向同性黏—超弹性本构模型. 力学学报, 2017, 49(3): 677-684 (Tan Bingdong, Xu Jinsheng, Sun Chaoxiang, et al. A transversely isotropic visco-hyperelastic constitutive model for short fiber reinforced EPDM. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 677-684 (in Chinese) doi: 10.6052/0459-1879-16-380
    [30]
    谈炳东, 许进升, 贾云飞, 等. 短纤维增强 EPDM 包覆薄膜超弹性本构模型. 力学学报, 2017, 49(2): 317-323 (Tan Bingdong, Xu Jin-sheng, Jia Yunfei, et al. Hyperelastic constitutive model for short fiber reinforced EPDM inhibitor film. Chinese Journal of Theoreti-cal and Applied Mechanics, 2017, 49(2): 317-323 (in Chinese) doi: 10.6052/0459-1879-16-324
    [31]
    Mitsuteru A, Yoshiyuki K, Yoshimi S, et al. Constitutive modeling for texture reinforced rubber by using an anisotropic viscohypere-lastic model. Doboku Gakkai Ronbunshuu A, 2010, 66(2): 194-205 doi: 10.2208/jsceja.66.194
    [32]
    Rebouah M, Chagnon G. Permanent set and stress softening consti-tutive equation applied to rubber like materials and soft tissues. Acta Mechanica, 2013, 225(6): 1685-1698
    [33]
    Nasdala, L, Kempe A, Rolfes, R. An elastic molecular model for rubber inelasticity. Computational Materials Science, 2015, 106: 83-99 doi: 10.1016/j.commatsci.2015.04.036
    [34]
    Külcü ID, Tanrverdi HB. A constitutive model for hysteresis: the continuum damage approach for filled rubber-like materials. Archive of Applied Mechanics, 2020, 90: 1771-1781 doi: 10.1007/s00419-020-01695-2
    [35]
    Xiao H. An explicit, direct approach to obtaining multi-axial elasti-cpotentials which exactly match data of four benchmark tests for incompressible rubberlike materials-Part 1: incompressible deformat-ions. Acta Mechanica, 2012, 223(9): 2309-2063
    [36]
    Xiao H, Ding XF, Cao J, et al. New multi-axial constitutive mod-dels for large elastic deformation behaviors of soft solids up to breaking. International Journal of Solids and Structures, 2017, 109: 123-130 doi: 10.1016/j.ijsolstr.2017.01.013
    [37]
    Wang XM, Li H, Yin ZN, et al. Multiaxial strain energy functions of rubberlike materials: An explicit approach based on polynomial interpolation. Rubber Chemistry and Technology, 2014, 87(1): 168-183 doi: 10.5254/rct.13.86960
    [38]
    王晓明, 吴荣兴, 肖衡. 显式模拟类橡胶材料Mullins效应滞回圈. 力学学报, 2019, 51(2): 484-493 (Wang Xiaoming, Wu Rongxing, Xiao Heng. Explicit modeling the hysteresis loops of the mullins effect for rubber-like materials. Chinses Journal of Theoretical and Applied Mechanics, 2019, 51(2): 484-493 (in Chinese) doi: 10.6052/0459-1879-18-334
    [39]
    王晓明, 郑东, 吴荣兴等. 类橡胶材料变形直到破坏的显式本构模型. 力学季刊, 2019, 40(2): 252-264 (Wang Xiaoming, Zheng Dong, Wu Rongxing, et al. Explicit constitutive model of rubber-like materials up to failure. Chinese Quarterly of Mechanics, 2019, 40(2): 252-264 (in Chinese)
    [40]
    王晓明, 肖衡. 显式方法精确模拟形状记忆聚合物热力学行为. 固体力学学报, 2020, 41(4): 366-378 (Wang Xiaoming, Xiao Heng. Accurately modeling thermomechancial behavior of shape memory polymer with explicit Method. Chinese Journal of Solid Mechani-cs, 2020, 41(4): 366-378 (in Chinese)
    [41]
    Xiao H, Chen LS. Hencky’s logarithmic strain and dual stress-stra-in and strain-stress relations isotropic finite hyperelasticity. Internat-ional Journal of Solids and Structures, 2003, 40(6): 1455-146 doi: 10.1016/S0020-7683(02)00653-4
  • Related Articles

    [1]Wei Fankai, Yi Chuanshuai, Wu Huaping, Lu Yebo, Sun Quan. SIMULATION ON THE ELECTRICAL AND MECHANICAL FATIGUE DAMAGE BEHAVIOR OF CONDUCTIVE HYDROGEL INTERFACE UNDER CYCLIC LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1711-1720. DOI: 10.6052/0459-1879-23-162
    [2]Wang Monan, Jiang Guodong, Liu Fengjie. MULTI-SCALE MODELING AND SIMULATION OF SKELETAL MUSCLE BIOMECHANICAL PROPERTIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 509-531. DOI: 10.6052/0459-1879-22-496
    [3]Zhang Yuanrui, Zhu Yudong, Zheng Zhijun, Yu Jilin. A COUPLING ANALYSIS MODEL OF CLAMPED MONOLITHIC BEAM IMPACTED BY FOAM PROJECTILES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2161-2172. DOI: 10.6052/0459-1879-22-223
    [4]Yan Jun, Hu Haitao, Su Qi, Yin Yuanchao, Wu Shanghua, Lu Hailong, Lu Qingzhen. PROSPECT AND PROGRESSION OF KEY MECHANICAL PROBLEMS IN MARINE CABLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 846-861. DOI: 10.6052/0459-1879-22-113
    [5]Lei Chen Fenghua Zhou Tiegang Tang. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 861-870. DOI: 10.6052/0459-1879-2011-5-lxxb2010-675
    [6]Yun Xu, Jun Chen, Xijun Wei. A new adaptive finite element method for multiscale dynamic simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 722-729. DOI: 10.6052/0459-1879-2009-5-2008-024
    [7]Guiping Zhao, Tianjian Lu. Dynamic response of cellular metallic sandwich plates under impact loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 194-206. DOI: 10.6052/0459-1879-2008-2-2007-129
    [8]Yan Zhao, Zhonghua Shen, Jian Lu, Xiaowu Ni. Finite element simulation of leaky lamb wave at fluid-solid interfaces excited thermoelastically by pulsed laser[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 35-39. DOI: 10.6052/0459-1879-2008-1-2006-065
    [9]Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198
    [10]Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946
  • Cited by

    Periodical cited type(7)

    1. 杨舟,冯青松,邓杰,张凌,贺辉. 基于高斯展开法的钢轨-双声学黑洞压电梁俘能特性研究. 振动工程学报. 2025(05): 1002-1015 .
    2. 张欣宇,肖玉善,吴振,任晓辉. 压电智能功能梯度夹芯结构高精度理论模型与主动控制. 力学学报. 2024(01): 130-140 . 本站查看
    3. 胡帅钊,聂国才,张忠伟,邵明玉,马驰骋. 附加液体质量的压电俘能器俘能特性研究. 压电与声光. 2024(04): 609-616 .
    4. 梅杰,宋钢,李立杰,陈定方,李杨. 压电材料平面Ⅰ型裂纹模拟仿真分析. 起重运输机械. 2023(17): 58-65 .
    5. 张伟,刘爽,毛佳佳,黎绍佳,曹东兴. 磁耦合式双稳态宽频压电俘能器的设计和俘能特性. 力学学报. 2022(04): 1102-1112 . 本站查看
    6. 薛坚,牛牧青,张文勇,陈立群. 二元复合材料板的自由振动:半解析法. 力学学报. 2022(07): 2041-2049 . 本站查看
    7. 曹彩芹,陈晶博,李东波. 考虑电场梯度的挠曲电纳米板弯曲性能分析. 力学学报. 2022(11): 3088-3098 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (905) PDF downloads (65) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return