Citation: | Wang Xiaoming, Wu Rongxing, Jiang Yi, Xiao Heng. Explicitly modeling permanent set and anisotropy property induced by stress softening for rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1999-2009. DOI: 10.6052/0459-1879-21-060 |
[1] |
Mullins L. Softening of rubber by deformation. Rubber Chemistry and Technology, 1969, 42(1): 339-362 doi: 10.5254/1.3539210
|
[2] |
Mullins L. Effect of stretching on the properties of rubber. Rubber Chemistry and Technology, 1948, 21(2): 281-300 doi: 10.5254/1.3546914
|
[3] |
Mullins L. Permanent set in vulcanized rubber. Rubber Chemistry and Technology, 1949, 22(4): 1036-1044 doi: 10.5254/1.3543010
|
[4] |
Bueche F. Molecular basis of the Mullins effect. Journal of Appli-ed Polymer Science, 1960, 4: 107-114 doi: 10.1002/app.1960.070041017
|
[5] |
Bueche F. Mullins effect and rubber-filler interaction. Journal of Applied Polymer Science, 1961, 5: 271-281 doi: 10.1002/app.1961.070051504
|
[6] |
Lee M, William M. Application of a new structural theory to pol-ymers. A. Uniaxial stress in crosslinked rubbers. Journal of the Mechanics and Physics of Solids, 1985, 45: 1805-1834
|
[7] |
Harwood JAC, Mullins L, Payne AR. Stress softening in natural rubber vulcanizates. Part II. Stress softening effects in pure gum and filler load rubbers. Journal of Applied Polymer Science, 1965, 9: 3011-3021.
|
[8] |
Govindjee S, Simo JC. A mirco-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullin-s’ effect. Journal of the Mechanics and Physics of Solids, 1991, 39(1): 87-112 doi: 10.1016/0022-5096(91)90032-J
|
[9] |
Marckmann G, Verron E, Gornet L, et al. A theory of network alteration for the Mullins effect. Journal of the Mechanics and Physics of Solids, 2002, 50: 2011-2028 doi: 10.1016/S0022-5096(01)00136-3
|
[10] |
Göktepe S, Miehee C. A micro-macro approach to rubber-like mat-erials. Part III: The micro-sphere model of anisotropic Mullins-typedamage. Journal of the Mechanics and Physics of Solids, 2005, 53: 2259-2283 doi: 10.1016/j.jmps.2005.04.010
|
[11] |
Blanchard AF, Parkinson D. Breakage of carbon-rubber networks by applied stress. Rubber Chemistry and Technology, 1952, 44(4): 799-812
|
[12] |
Arrude EM, Boyce MC. A three-dimensional constitutive model forthe large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412 doi: 10.1016/0022-5096(93)90013-6
|
[13] |
Mullins L, Tobin, NR. Theoretical model for the elastic behavior of filler reinforced vulcanized rubbers. Rubber Chemistry and Technology, 1957, 30(2): 555-571 doi: 10.5254/1.3542705
|
[14] |
Mullins L, Tobin NR. Stress softening rubber vulcanizates Part I. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber. Journal of Applied polymer Science, 1965, 9: 2993-3009 doi: 10.1002/app.1965.070090906
|
[15] |
Klüppel M, Schramm J. An advanced micro-mechanical model of hyper-elasticity and stress softening of reinforced rubbers // Dorf-mann, Eds. Constitutive Models for Rubber. 1999, 211-218
|
[16] |
Govindjee S. An evaluation of strain amplification concepts via Monte Carlo simulations of an ideal composite. Rubber Chemistry and Technology, 1997, 70: 25-37 doi: 10.5254/1.3538416
|
[17] |
Bergström JS, Boyce MC. Mechanical behavior of particle filled elastomers. Rubber Chemistry and Technology, 1999, 72: 633-656 doi: 10.5254/1.3538823
|
[18] |
Simo JC. On a fully three-dimensional finite-strain viscoelastic da-mage model: Formulation and computational aspects. Computer Methods in Applied Mechanics & Engineering, 1987, 60: 153-173
|
[19] |
Miehe C. Discontinuous and continuous damage evolution in Ogde-n-type large-strain elastic materials. European Journal of Mechanics A/Solids, 1995, 14: 697-720
|
[20] |
Miehe C, Keck J. Superimposed finite elastic-viscoelastic-plastoelas-tic stress response with damage in filled rubbery polymers. Experi-ments, modeling and algorithmic implementation. Journal of Mech-anics and Physicals of Solids, 2000, 48(2): 323-365 doi: 10.1016/S0022-5096(99)00017-4
|
[21] |
Kaliske M, Nasdala L, Rothert H. On damage modeling for elasticand viscoelastic materials at large strain. Computer & Structures, 2001, 79: 2133-2141
|
[22] |
Lin RC, Schomburg U. A finite elastic-viscoelastic-elastoplastic material low with damage: theoretical and numerical aspects. Com-puter Methods in Applied Mechanics & Engineering, 2003, 192: 1591-1627
|
[23] |
Ogden RW, Roxburgh DG. A pseudo-elastic model for the Mullins effect in filled rubber. Proceedings of the Royal Society, 1999, 455: 2861-2878 doi: 10.1098/rspa.1999.0431
|
[24] |
Li on, A. A constitutive model for carbon black filled rubber: Exp-erimental investigations and mathematical representation. Continuum Mechanics and Thermodynamics, 1996, 8(3): 153-169 doi: 10.1007/BF01181853
|
[25] |
Li on, A. On the large deformation behaviour of reinforced rubber at different temperatures. Journal of the Mechanics and Physics of Solids, 1997, 45(11-12): 1805-1834 doi: 10.1016/S0022-5096(97)00028-8
|
[26] |
Diani J, Brieu M, Vacherand JM. A damage directional constitutive model for Mullins effect with permanent set and induced anisotropy. European Journal of Mechanics A/Solids, 2006, 25: 483-496 doi: 10.1016/j.euromechsol.2005.09.011
|
[27] |
Dorfmann A, Ogden RW. A constitutive model for the Mullins eff-ect with permanent set in particle-reinforced rubber. International Journal of Solids and Structures, 2004, 41: 1855-1878 doi: 10.1016/j.ijsolstr.2003.11.014
|
[28] |
Pawelski H. Softening behavior of elastomeric media after loading in changing directions//Besdo D, Schuster RH, Ilheman J, Eds. Proceedings of the Second European Conference of the Constitutive Models for Rubber. Balkema, 1999, 27-34.
|
[29] |
谈炳东, 许进升, 孙朝翔, 等. 短纤维增强三元乙丙橡胶横观各向同性黏—超弹性本构模型. 力学学报, 2017, 49(3): 677-684 (Tan Bingdong, Xu Jinsheng, Sun Chaoxiang, et al. A transversely isotropic visco-hyperelastic constitutive model for short fiber reinforced EPDM. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 677-684 (in Chinese) doi: 10.6052/0459-1879-16-380
|
[30] |
谈炳东, 许进升, 贾云飞, 等. 短纤维增强 EPDM 包覆薄膜超弹性本构模型. 力学学报, 2017, 49(2): 317-323 (Tan Bingdong, Xu Jin-sheng, Jia Yunfei, et al. Hyperelastic constitutive model for short fiber reinforced EPDM inhibitor film. Chinese Journal of Theoreti-cal and Applied Mechanics, 2017, 49(2): 317-323 (in Chinese) doi: 10.6052/0459-1879-16-324
|
[31] |
Mitsuteru A, Yoshiyuki K, Yoshimi S, et al. Constitutive modeling for texture reinforced rubber by using an anisotropic viscohypere-lastic model. Doboku Gakkai Ronbunshuu A, 2010, 66(2): 194-205 doi: 10.2208/jsceja.66.194
|
[32] |
Rebouah M, Chagnon G. Permanent set and stress softening consti-tutive equation applied to rubber like materials and soft tissues. Acta Mechanica, 2013, 225(6): 1685-1698
|
[33] |
Nasdala, L, Kempe A, Rolfes, R. An elastic molecular model for rubber inelasticity. Computational Materials Science, 2015, 106: 83-99 doi: 10.1016/j.commatsci.2015.04.036
|
[34] |
Külcü ID, Tanrverdi HB. A constitutive model for hysteresis: the continuum damage approach for filled rubber-like materials. Archive of Applied Mechanics, 2020, 90: 1771-1781 doi: 10.1007/s00419-020-01695-2
|
[35] |
Xiao H. An explicit, direct approach to obtaining multi-axial elasti-cpotentials which exactly match data of four benchmark tests for incompressible rubberlike materials-Part 1: incompressible deformat-ions. Acta Mechanica, 2012, 223(9): 2309-2063
|
[36] |
Xiao H, Ding XF, Cao J, et al. New multi-axial constitutive mod-dels for large elastic deformation behaviors of soft solids up to breaking. International Journal of Solids and Structures, 2017, 109: 123-130 doi: 10.1016/j.ijsolstr.2017.01.013
|
[37] |
Wang XM, Li H, Yin ZN, et al. Multiaxial strain energy functions of rubberlike materials: An explicit approach based on polynomial interpolation. Rubber Chemistry and Technology, 2014, 87(1): 168-183 doi: 10.5254/rct.13.86960
|
[38] |
王晓明, 吴荣兴, 肖衡. 显式模拟类橡胶材料Mullins效应滞回圈. 力学学报, 2019, 51(2): 484-493 (Wang Xiaoming, Wu Rongxing, Xiao Heng. Explicit modeling the hysteresis loops of the mullins effect for rubber-like materials. Chinses Journal of Theoretical and Applied Mechanics, 2019, 51(2): 484-493 (in Chinese) doi: 10.6052/0459-1879-18-334
|
[39] |
王晓明, 郑东, 吴荣兴等. 类橡胶材料变形直到破坏的显式本构模型. 力学季刊, 2019, 40(2): 252-264 (Wang Xiaoming, Zheng Dong, Wu Rongxing, et al. Explicit constitutive model of rubber-like materials up to failure. Chinese Quarterly of Mechanics, 2019, 40(2): 252-264 (in Chinese)
|
[40] |
王晓明, 肖衡. 显式方法精确模拟形状记忆聚合物热力学行为. 固体力学学报, 2020, 41(4): 366-378 (Wang Xiaoming, Xiao Heng. Accurately modeling thermomechancial behavior of shape memory polymer with explicit Method. Chinese Journal of Solid Mechani-cs, 2020, 41(4): 366-378 (in Chinese)
|
[41] |
Xiao H, Chen LS. Hencky’s logarithmic strain and dual stress-stra-in and strain-stress relations isotropic finite hyperelasticity. Internat-ional Journal of Solids and Structures, 2003, 40(6): 1455-146 doi: 10.1016/S0020-7683(02)00653-4
|
[1] | Wei Fankai, Yi Chuanshuai, Wu Huaping, Lu Yebo, Sun Quan. SIMULATION ON THE ELECTRICAL AND MECHANICAL FATIGUE DAMAGE BEHAVIOR OF CONDUCTIVE HYDROGEL INTERFACE UNDER CYCLIC LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1711-1720. DOI: 10.6052/0459-1879-23-162 |
[2] | Wang Monan, Jiang Guodong, Liu Fengjie. MULTI-SCALE MODELING AND SIMULATION OF SKELETAL MUSCLE BIOMECHANICAL PROPERTIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 509-531. DOI: 10.6052/0459-1879-22-496 |
[3] | Zhang Yuanrui, Zhu Yudong, Zheng Zhijun, Yu Jilin. A COUPLING ANALYSIS MODEL OF CLAMPED MONOLITHIC BEAM IMPACTED BY FOAM PROJECTILES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2161-2172. DOI: 10.6052/0459-1879-22-223 |
[4] | Yan Jun, Hu Haitao, Su Qi, Yin Yuanchao, Wu Shanghua, Lu Hailong, Lu Qingzhen. PROSPECT AND PROGRESSION OF KEY MECHANICAL PROBLEMS IN MARINE CABLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 846-861. DOI: 10.6052/0459-1879-22-113 |
[5] | Lei Chen Fenghua Zhou Tiegang Tang. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 861-870. DOI: 10.6052/0459-1879-2011-5-lxxb2010-675 |
[6] | Yun Xu, Jun Chen, Xijun Wei. A new adaptive finite element method for multiscale dynamic simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 722-729. DOI: 10.6052/0459-1879-2009-5-2008-024 |
[7] | Guiping Zhao, Tianjian Lu. Dynamic response of cellular metallic sandwich plates under impact loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 194-206. DOI: 10.6052/0459-1879-2008-2-2007-129 |
[8] | Yan Zhao, Zhonghua Shen, Jian Lu, Xiaowu Ni. Finite element simulation of leaky lamb wave at fluid-solid interfaces excited thermoelastically by pulsed laser[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 35-39. DOI: 10.6052/0459-1879-2008-1-2006-065 |
[9] | Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198 |
[10] | Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946 |
1. |
杨舟,冯青松,邓杰,张凌,贺辉. 基于高斯展开法的钢轨-双声学黑洞压电梁俘能特性研究. 振动工程学报. 2025(05): 1002-1015 .
![]() | |
2. |
张欣宇,肖玉善,吴振,任晓辉. 压电智能功能梯度夹芯结构高精度理论模型与主动控制. 力学学报. 2024(01): 130-140 .
![]() | |
3. |
胡帅钊,聂国才,张忠伟,邵明玉,马驰骋. 附加液体质量的压电俘能器俘能特性研究. 压电与声光. 2024(04): 609-616 .
![]() | |
4. |
梅杰,宋钢,李立杰,陈定方,李杨. 压电材料平面Ⅰ型裂纹模拟仿真分析. 起重运输机械. 2023(17): 58-65 .
![]() | |
5. |
张伟,刘爽,毛佳佳,黎绍佳,曹东兴. 磁耦合式双稳态宽频压电俘能器的设计和俘能特性. 力学学报. 2022(04): 1102-1112 .
![]() | |
6. |
薛坚,牛牧青,张文勇,陈立群. 二元复合材料板的自由振动:半解析法. 力学学报. 2022(07): 2041-2049 .
![]() | |
7. |
曹彩芹,陈晶博,李东波. 考虑电场梯度的挠曲电纳米板弯曲性能分析. 力学学报. 2022(11): 3088-3098 .
![]() |