EI、Scopus 收录
Tang Wenyue, Hu Guohui. FLOW CHARACTERISTICS OF LIQUID FILMS DRIVEN BY PERIODIC ELECTRO-OSMOSIS IN BIOCHIPS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 600-606. doi: 10.6052/0459-1879-2012-3-20120317
Citation: Tang Wenyue, Hu Guohui. FLOW CHARACTERISTICS OF LIQUID FILMS DRIVEN BY PERIODIC ELECTRO-OSMOSIS IN BIOCHIPS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 600-606. doi: 10.6052/0459-1879-2012-3-20120317


doi: 10.6052/0459-1879-2012-3-20120317
Funds:  The project was supported by the National Natural Science Foundation of China (10872122), Science and Technology Commission of Shanghai Municipality (10dz2212600), Ph.D. Programs Foundation of Ministry of Education of China (20103108110004) andProgram for Changjiang Scholars and Innovative Research Team in University (IRT0844)
  • Received Date: 2011-01-28
  • Rev Recd Date: 2011-09-09
  • Publish Date: 2012-05-18
  • The flow of a thin film on a solid substrate driven by periodic electro-osmosis is studied in the present paper. To describe the relation between potential of electric double layer and charge density, the Poisson-Boltzmann equation is utilized under the Debye-Hückel approximation. An analytical solution for the film is obtained by solving the periodic electro-osmosis driven system, coupling with the Navier-Stokes equation for incompressible viscous fluid. Results indicate that amplitude of the flow velocity in the thin film strongly depends on the Reynolds number, i.e., the amplitude decreases as the Reynolds number increasing. The influence of the ζ potential, as well as the viscosity, is also analyzed on the flow velocity at the free surface and phase difference of the oscillating velocity.


  • loading
  • Dutta P, Beskok A, Warburton TC. Numerical simulation of mixed electroosmotic/pressure driven micro flows. Numerical Heat Transfer Part A, 2002, 41: 131-148  
    Reuss F. Sur un nouvel effet de le electricite glavanique. Mem Soc Imp Nat Mosc, 1809, 2: 327-37
    Ghosal S. Electrokinetic flow and dispersion in capillary electrophoresis. Annu Rev Fluid Mech, 2006, 38: 309-338  
    Park HW, Lee JS, Kim TW. Comparison of the Nernst--Planck model and the Poisson--Boltzmann model for electroosmotic flows in microchannels. J Colloid Interface Sci, 2007, 315: 731-739  
    Burgreen D, Nakache FR. Electrokinetic flow in ultrafine capillary slits. J Phys Chem, 1964, 68: 1084-1091  
    Levine S, Marriott JR, Neale G, et al. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J Colloid Interface Sci, 1975, 52: 136-149  
    Tsao HK. Electroosmotic flow through an annulus. J Colloid Interface Sci, 2000, 225: 247-250  
    Wang CY, Liu YH, Chang CC. Analytical solution of electro-osmotic flow in a semicircular microchannel. Phys Fluids, 2008, 20: 063105  
    Dutta P, Beskok A. Analytical solution of time periodic electroosmotic flows: analogies to stokes' second problem. Anal Chem, 2001, 73: 5097-5102  
    Ghosal S. Lubrication theory for electroosmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. Journal of Fluid Mechanics, 2002, 459: 103-128
    Jian Y, Yang L, Liu Q. Time periodic electro-osmotic flow through a microannulus. Physics of Fluids, 2010, 22: 042001  
    吴健康,王贤明. 生物芯片微通道周期性电渗流特性.力学学报, 2006, 38(3): 309-315 (Wu Jiankang, Wang Xianming. Flow behavior of periodical electroosmosis in microchannel for biochips. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): 309-315 (in Chinese))
    聂德明,林建忠.突扩微通道中流体电渗驱动的LBM模拟研究.力学学报, 2010, 42(5): 838-846 (Nie Deming, Lin Jianzhong. Lattice Boltzmann similation of electroosmotic flows in microchannel with a sudden expansion. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 838-846 (in Chinese))
    聂德明,林建忠,石兴.弯管电渗流场的数值模拟及研究.分析化学, 2004, 32(8): 988-992 (Nie Deming, Lin Jianzhong, Shi Xing. Numerical simulation and research on the electroosmotic flow in the curve channel. Chinese J Anal Chem, 2004, 32(8): 988-992 (in Chinese))
    Wang XM, Chen B, Wu JK. A semianalytical solution of periodical electro-osmosis in a rectangular microchannel. Phys Fluids, 2007, 19: 127101  
    Oddy MH, Antiago JG, Mikkelsen JG. Electrokinetic instability micromixing. Analytical Chemistry, 2001, 73: 5822-5832  
    Suresh V, Homsy GM. Stability of time-modulated electroosmotic flow. Physics of Fluids, 2004, 16: 2349  
    Brask A, Geranovic G, Mads J Jensen, et al. A novel electro-osmotic pump design for nonconducting liquids: theoretical analysis of flow rate--pressure characteristics and stability. Journal of Micromechanics and Microengineering, 2005, 15: 883-891  
    Ngoma GD, Erchiqui F. Pressure gradient and electroosmotic effects on two immiscible fluids in a microchannel between two parallel plates. J Micromech Microeng, 2006, 16: 83-91  
    Gao Y, Weng FN, Yang C, et al. Transient two-liquid electroosmotic flow with electric charges at the interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 266: 117-128  
    Joo SM. A nonlinear study on the interfacial instabilities in electro-osmotic flows based on the Debye--Hockel approximation. Microfluidics and Nanofluidics, 2008, 5: 417-423  
    Choi W, Sharma A, Lim G, et al. Is free surface free in micro-scale electrokinetic flows. Journal of Colloid and Interface Science, 2010, 347: 153-155  
    Saville DA. Electrohydrodynamics: the Taylor-Melcher leaky dielectric model annual. Review of Fluid Mechanics, 1997, 29: 27-64  
    Uguz AK, Ozen O, Aubry N. Electric field effect on a two-fluid interface instability in channel flow for fast electric times. Physics of Fluids, 2008, 20: 031702  
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1360) PDF downloads(3911) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint