EI、Scopus 收录
中文核心期刊
Xue Gao Qian Chen H. Dynamic properties of corrugated-pipe type salim vibration isolator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1162-1169. DOI: 10.6052/0459-1879-2011-6-lxxb2010-724
Citation: Xue Gao Qian Chen H. Dynamic properties of corrugated-pipe type salim vibration isolator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1162-1169. DOI: 10.6052/0459-1879-2011-6-lxxb2010-724

Dynamic properties of corrugated-pipe type salim vibration isolator

  • Received Date: November 01, 2010
  • Revised Date: April 12, 2011
  • Corrugated-pipe type solid and liquid mixture vibrationisolator (SALiM) is a new type of isolator for vibration isolation of heavyequipment with low frequency. Firstly, this paper establishes the mechanicsmodel of elastic solid elements by introducing plate-shell model. Based ongeometry nonlinearity of corrugated-pipe, the stiffness of the element underouter liquid pressure and inner air pressure can be obtained by theperturbation method. Then the stiffness of isolator is derived and analyzed,and as a result, the stiffness is piecewise nonlinear and determined byparameters of the solid elements and corrugated-pipe container. In addition,the equation of motion of a single degree of freedom system is given, whichconsists of a SALiM vibration isolator and mechanical equipment. Theproperties of the frequency response function of the system are analyzedusing average method which is a classical analytic method for solvingnonlinear differential equations. And it is found that this system withSALiM isolator shows softening stiffness behaviour. The jumping phenomenonclearly occurs under certain condition, and saddle-node bifurcation of theprimary resonance response can adequately illustrate the jumping phenomenon.
  • Related Articles

    [1]Ma Zhaozhao, Yu Yonghua, Yang Qingchao, Zhou Ruiping, Chai Kai. ATTRACTOR MIGRATION CONTROL CHARACTERISTICS OF THE TWO-STAGE QUASI-ZERO STIFFNESS VIBRATION ISOLATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 730-739. DOI: 10.6052/0459-1879-24-482
    [2]Yang Zhaohu, Li Xianfeng, Li Denghui, Zhou Biliu. GLOBAL DYNAMICS OF A PIECEWISE ASYMMETRIC OSCILLATOR UNDER QUASI-PERIODIC EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 3012-3022. DOI: 10.6052/0459-1879-24-099
    [3]Zhang Ruiliang, Shen Yongjun, Han Dong. CORRECTION AND DYNAMICAL ANALYSIS OF CLASSICAL MATHEMATICAL MODEL FOR PIECEWISE LINEAR SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 225-235. DOI: 10.6052/0459-1879-23-295
    [4]Hao Li, Fagang Zhao, Xubin Zhou. A QUASI-ZERO STIFFNESS VIBRATION ISOLATOR BASED ON HYBRID BISTABLE COMPOSITE LAMINATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 354-363. DOI: 10.6052/0459-1879-18-266
    [5]Gao Xue, Chen Qian, Liu Xianbin. NONLINEAR DYNAMICS DESIGN FOR PIECEWISE SMOOTH VIBRATION ISOLATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 192-200. DOI: 10.6052/0459-1879-15-099
    [6]Peng Haibo, Shen Yongjun, Yang Shaopu. PARAMETERS OPTIMIZATION OF A NEW TYPE OF DYNAMIC VIBRATION ABSORBER WITH NEGATIVE STIFFNESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 320-327. DOI: 10.6052/0459-1879-14-275
    [7]Yu Muchun, Chen Qian, Gao Xue, Zhang Shuzhen. INVESTIGATION OF MOLECULAR SPRING ON VIBRATION ISOLATION MECHANISM AND MECHANICAL PROPERTIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 553-560. DOI: 10.6052/0459-1879-13-362
    [8]xiaofang zhang, zhangyao chen, Ying Ji, Qinsheng Bi. The dynamical behavior of a piecewise-linear electric circuit with periodical excitation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 765-774. DOI: 10.6052/0459-1879-2009-5-2008-075
    [9]Dynamic properties of a class of vibration with isolator with solid-and-liquid mixture[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 253-258. DOI: 10.6052/0459-1879-2009-2-2008-059
    [10]NONSMOOTH ANALYSIS OF DYNAMICS OF A PIECEWISE LINEAR SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(4): 483-488. DOI: 10.6052/0459-1879-1996-4-1995-358
  • Cited by

    Periodical cited type(15)

    1. 申加康,李敏伟,傅耘,张建军,邵敏强. 联合实测数据分析和仿真分析的振动环境预计方法. 装备环境工程. 2025(02): 12-19 .
    2. 李炳蔚,朱红民,刘时秀,陈刚. 基于声振传递的飞行器噪声振动环境预示方法研究. 振动与冲击. 2024(01): 290-296 .
    3. 张学成,阎金贞,张保刚,秦旭峰,孙晓凤,吴君辉,张国军,刘陆广. 板壳结构在声振联合试验下的振动响应耦合分析. 装备环境工程. 2024(04): 91-96 .
    4. 张国智,宋徽. 三自由度模态分析解析求解策略研究. 新乡学院学报. 2024(12): 44-47 .
    5. 王硕,黄进安,代成浩,陈海波. 高速流场中高频振动面板的能量辐射传递模型研究. 应用力学学报. 2023(01): 57-65 .
    6. 龙新军,欧阳涵,方贤亮,潘望白,胡迪科. 固液捆绑火箭尾舱设备随机振动环境优化预示分析. 航天器环境工程. 2023(06): 605-610 .
    7. 刘艳欣,周志卫,任向前,王向进. 机载悬挂装置虚拟振动试验技术研究. 航空科学技术. 2022(03): 111-118 .
    8. 王显圣,周方奇,徐来武,吴军强,路波,杨党国. 内埋弹舱流动/振动/噪声多场载荷实验. 空气动力学学报. 2022(03): 160-168 .
    9. 王叶奔儒,吴金花,李传吟,王华,秦凯. 天和核心舱资源舱布局设计与验证. 上海航天(中英文). 2022(S2): 107-112 .
    10. 马文漪,陈强,李彦斌,程危危. 缝合式夹芯结构宽频动力学响应特性研究. 振动与冲击. 2022(21): 333-341 .
    11. 康甜,李明海,李春丽,王文,周林,吴连军,刘青林. 再入飞行力热环境预测与试验技术研究进展. 装备环境工程. 2021(03): 1-8 .
    12. 郑天堂,黄新波,赵隆,朱超,袁鹏. 输电杆塔沉降状态感知技术研究. 广东电力. 2021(04): 85-93 .
    13. 董杰,王雨田,胡晶,孙保安,汪卫华,白海洋. 非晶合金剪切带动力学行为研究. 力学学报. 2020(02): 379-391 . 本站查看
    14. 韩丽,高珂佳,秦朝红. 考虑声场空间相关的结构声振响应预示方法. 航天器环境工程. 2020(03): 245-249 .
    15. 庞学丰,王瑞文,张玉美,赵超泽. 基于机器视觉的航天器密封舱内结构装配精度检测系统设计. 计算机测量与控制. 2020(08): 53-57 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1714) PDF downloads (464) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return