EI、Scopus 收录
中文核心期刊
Taicong Chen, Haitao Ma. Exact finite element solutions of buckling analysis of frame structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 953-960. DOI: 10.6052/0459-1879-2009-6-2008-100
Citation: Taicong Chen, Haitao Ma. Exact finite element solutions of buckling analysis of frame structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 953-960. DOI: 10.6052/0459-1879-2009-6-2008-100

Exact finite element solutions of buckling analysis of frame structures

  • Received Date: February 25, 2008
  • Revised Date: June 09, 2008
  • Based on general solution for the homogeneous governingequation for the linear buckling analysis of Euler beam, new shape functionsare constructed and a new finite element is formulated. With the derivedelement stiffness matrix and geometric stiffness matrix, an iterativealgorithm based on conventional eigenvalue calculation procedure is proposedfor linear buckling analysis of frame structures. The conventional finiteelement is proved to be an approximation of the proposed element. By theapplication of the proposed element and algorithm, exact buckling solutionsof frame structures can be obtained even with coarse meshes. Illustrativenumerical examples are presented to show the effectiveness of the newelement and algorithm.
  • Related Articles

    [1]Wang Xiaoming, Tian Xingxing, Zhang Zhen, Xiao Heng. EXPLICITLY MODELING THE MULLINS EFFECT OF RUBBER-LIKE MATERIAL WITH RATE DEPENDENCY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3553-3563. DOI: 10.6052/0459-1879-24-254
    [2]Wang Xiaoming, Wu Rongxing, Jiang Yi, Xiao Heng. EXPLICITLY MODELING PERMANENT SET AND ANISOTROPY PROPERTY INDUCED BY STRESS SOFTENING FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1999-2009. DOI: 10.6052/0459-1879-21-060
    [3]Zhang Peng, Du Chengbin, Jiang Shouyan. CRACK FACE CONTACT PROBLEM ANALYSIS USING THE SCALED BOUNDARY FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1335-1347. DOI: 10.6052/0459-1879-17-195
    [4]Xu Xiaohai, Su Yong, Cai Yulong, Cheng Teng, Zhang Qingchuan. INFLUENCE OF SHAPE FUNCTIONS AND TEMPLATE SIZE IN DIGITAL IMAGE CORRELATION METHOD FOR HIGHLY INHOMOGENEOUS DEFORMATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 848-862. DOI: 10.6052/0459-1879-15-119
    [5]Yixiao Qin, Yumin Cheng. Reproducing kernel particle boundary element-free method for potential problems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 898-905. DOI: 10.6052/0459-1879-2009-6-2008-009
    [6]Yufeng Xing, Yang Yang. A bending moment beam eigenelement with piecewise shape functions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 222-228. DOI: 10.6052/0459-1879-2008-2-2007-263
    [7]Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198
    [8]TWO-NODE CURVED ELEMENT METHOD FOR GEOMETRICALLY NONLINEAR ANALYSIS OF TENSION STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(5): 633-639. DOI: 10.6052/0459-1879-1999-5-1995-075
    [9]MEAN FUNCTIONS AND MEAN MODIFICATION OF FINITE ELEMENT BASIS FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(6): 739-743. DOI: 10.6052/0459-1879-1994-6-1995-603
    [10]A THICK-THIN TRIANGULAR PLATE ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 317-326. DOI: 10.6052/0459-1879-1993-3-1995-647

Catalog

    Article Metrics

    Article views (2354) PDF downloads (1061) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return